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Abstract

Identification of ligands that tightly bind to given protein targets is a crucial step in
drug discovery. Traditional high-throughput screening approaches to this problem
are expensive and prone to failure while physics-based computational approaches
like docking and molecular dynamics have proven inaccurate. Many standard ma-
chine learning (ML) approaches have achieved outstanding success on virtual screen-
ing (identifying active ligands for a given protein) on benchmark datasets. This thesis
has three parts related to problems arising with ML algorithms in virtual screening.
In the first part, we demonstrate that many common ML models fail to generalise
well and that debiasing algorithms, a common means of improving generalisability
by eliminating bias in chemical data, fail to consistently improve generalisation. In
the second part, we develop methods of attribution for ML virtual screening mod-
els and show that many common ML models fail to learn the right binding logic on
toy data; we trace their attribution errors to spurious correlations in background data
that confound the models. In the third part, we develop models for the multiple pro-
tein/multiple ligand problem that can generalise to previously unseen proteins by
using a two-step process involving preprocessing with robust single protein models.
Our work points to common flaws in standard ML approaches to virtual screening

while proposing several potential solutions.
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Chapter 1

Introduction

1.1 Drug Discovery and Protein/Ligand Binding

The first step in drug discovery today is identification of a ligand that binds tightly to a
given protein target, carrying out a desired function [27, 30]. It is therefore crucial that
pharmaceutical scientists possess efficient and reliable methods of identifying ligands
that tightly bind to a given protein target. Unfortunately, many methods commonly
available today have serious limitations.

The predominant experimental approach is high-throughput screening, which is
guided trial-and-error using a screening library of millions of compounds [30]. How-
ever, chemical space, the set of all possible chemical compounds, consists of orders of
magnitude more compounds. Screening experiments are prone to failure because they
cannot explore a large enough fraction of chemical space to identify the best ligand for
a given protein [60, 45, 50]. Computational approaches would ideally explore regions
of chemical space that screening experiments could not explore for maximum utility.

A variety of computational approaches to this problem have been developed. There
are 3 distinct computational problems that could be considered: virtual screening,
which predicts whether or not a given ligand is active, i.e. tightly bound to the protein
in question, affinity prediction, which predicts binding affinity, and pose prediction,
which predicts the structure of the bound protein-ligand complex [13]. This thesis
focuses on the virtual screening problem. We may also consider two broad classes of
approaches: physical models or statistical models [13].

Physical models for virtual screening have relied on either docking, where both the
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protein and ligand are treated as rigid and fitted together using some scoring function,
or Molecular Dynamics, where the trajectories of the ligand and protein interacting are
simulated to predict activity [27, 13]. Both approaches require a scoring function or
force field to estimate the energy of a given protein-ligand interaction, since an exact
computation is not computationally feasible today [27, 10, 13]. Inaccuracies in the force
tield or other physical model and further coarse-graining for speed optimization have
hindered the overall utility of these methods [27, 10, 4, 13]. Often, these approaches
fail to predict many known interactions; when they are successful, the force fields need
to be hand-tuned to the given system and are largely not easily generalisable [13].
The emergence of large quantities of screening data in databases such as ChEMBL
[21] has encouraged the use of statistical models for this problem instead. Machine
learning techniques have been introduced and applied to the virtual screening prob-
lem with qualified success. In this thesis, we focus on identifying and rectifying some

of the problems with common ML approaches to virtual screening.

1.2 Machine Learning for Virtual Screening

Machine learning (ML) treats the virtual screening problem as a supervised classifi-
cation problem. Here, we are given data about a training set of ligands with known
activity and are asked to make predictions about a test set. A given model extracts
a feature vector for each ligand that describes its structure; it then fits a function on
a given high-dimensional vector space that predicts activity of a ligand. We test a
model’s accuracy by measuring its performance on the test set [13]. Models are ex-
pected to output probabilities that a given molecule is active; a chemist can then set
a threshold to split the predicted molecules into actives and inactives. The standard
measure of performance used throughout this work is the Area under the Receiver
Operator Characteristic Curve (AUC); the AUC does not consider choice of threshold.
An AUC of 0.5 corresponds to random predictions and of 1 to perfect accuracy.

There are two key choices to be made in this process: the choice of molecular rep-
resentation, or how to convert a ligand structure into a feature vector, and the choice
of model. A large number of molecular representations have been developed [46, 8].

The simplest possible representation is to count the number of heavy atoms, hydrogen
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bond donors and acceptors, ring systems and other important features [59, 72]. More
sophisticated features called chemical fingerprints also include information about the
chemical structure of the ligand; examples of fingerprints include MACCS keys [16]
and ECFP fingerprints [58]. A recent, more powerful approach is the graph convo-
lutional neural network, which takes as input the chemical structure as a combinato-
rial graph and learns the appropriate molecular representation alongside the activity
function [17, 35, 2, 23]. It is still unclear whether the increased complexity of these
descriptions consistently leads to improved performance [72, 47].

This work focuses exclusively on ECFP6 fingerprints as a feature description for
ligands. These fingerprints are generated by a three-step process. First, circles of up
to a given diameter, in this case 6, are drawn around each atom to produce a list of
substructures of the given molecule. Duplicate substructures are eliminated and each
substructure is assigned a numerical identifier that encodes its connectivity and atom
types. Lastly, each identifier is hashed to a fixed-length binary representation via a
given hash function [58]. A summary of the first two steps of this process may be
found in Fig. 1.2.1. This process provides a representation that accounts for atom type

and connectivity, but could potentially have a high rate of bit collision [28].

Diameter 0: Identifiers:
“ . . . -1266712900
o ® ° -1216914295
! e T — 78421366
-887929888
-276894788
Diameter 2:
© x . . . . -744082560
\:Y > =L Y . / T o7 . 0 . f\ - -798098402
N ; I ] A N E ——>  -690148606
- 1191819827
1687725933
; 1844215264
Diameter 4:
0 : o o . 0 -252457408
/\( < \‘( S 07N o /\( 132019747
. N vl ! < o \ ——» -2036474688
4 S N/ - -1979958858

-1104704513

Figure 1.2.1: Generating ECFP Fingerprints, taken from the ChemAxon documenta-
tion [58]. To generate these fingerprints, we first generate substructures
of up to a given radius and then compute numerical identifiers for each
substructure. Finally (not shown), we hash these identifiers into a fixed-
length bit string.

An equally wide variety of models have been applied to the virtual screening prob-

lem. Traditional approaches include support vector machines, Guassian processes,
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and random forests [13, 65, 77, 3, 4]. The relative simplicity and interpretability of
these approaches provides some guarantee to the user that they will not drastically
overfit. Over the past few years, there has been an explosion of interest in the use of
deep neural networks for virtual screening [13, 44, 17, 35, 2, 23, 66, 71, 55]. Deep neural
networks have the advantage of being highly expressive, i.e. able to fit essentially any
function, but at the cost of decreased interpretability and much greater likelihood of
overfitting. This work primarily focuses on simpler models, but many of the issues we
identify are also applicable to deep neural networks [47, 72]. Many of these models,
whether more traditional or deep, have performed outstandingly well on validation

sets, with reported AUCs exceeding 0.9 [66, 54, 17, 71, 35, 53, 55, 24].

1.3 Incorporating Multiple Proteins

All of the methods outlined thus far rely on the existence of screening data about the
protein of interest, and therefore do not obviate the need for a prior successful ex-
perimental screen. The problem of predicting ligands that tightly bind to a protein
without prior screening data is much more difficult [19, 57]. The most common ap-
proach to this problem is to expand the training set to include information about mul-
tiple proteins, for some of which we have available screening data. This problem is
now known as either proteochemometric modeling (PCM) or drug-target interactions
(DTI) [19, 57, 52, 14].

Creating a DTI model requires a representation of both the protein and the ligand
in question. If structural data is provided, a wide variety of structural representations
can be used. For families of closely related proteins, images of the 3D protein structure
or of the binding site can be directly encoded; if crystal structures of the bound protein-
ligand complex are available, those can also be used in a similar fashion [57, 38]. With-
out structural data, the protein sequence can be translated either into a simple amino
acid or dipeptide frequency count [19, 57, 56] or physico-chemical descriptors can be
used for individual amino acids [57, 68]. Another popular approach is the use of se-
quence or structural similarity in lieu of explicit vector representations [19, 57, 63];
these methods require kernel-based models.

Unlike the situation for virtual screening, many DTI models were designed specif-
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ically for the DTI problem, instead of being specific cases of more general models.
This is partially due to the popularity of similarity-based representations of the target
protein. One of the most popular model classes today is based on matrix factoriza-
tion, more commonly used in recommender systems [19]. In this approach, the ma-
trix of protein/ligand interactions is factorized as a product of two low-rank matrices
with constraints from protein and ligand similarities [25, 12, 76, 20, 19]. A number of
specialized loss functions and models have been developed along this general princi-
ple. However, many of these models show poor performance, especially on issues of
generalising to completely unknown proteins and ligands [19]. The specifics of these
approaches and some other popular ones will be discussed in Chapter 4.

Just as with virtual screening, deep neural networks have also emerged as a popu-
lar approach in this field [73, 31, 42, 22, 44, 55]. A variety of architectures for the deep
neural networks have been proposed, including the standard feedforward neural net-
work [55], the restricted Boltzmann machine [73], standard convolutional neural net-
works [71], and the graph convolutional neural network [35]. These neural networks
also can take in more complex representations of the target protein, which may include
the complete structure or the structure of the binding pocket, and complete structural
information about the ligand. The greater expressivity of the deep neural network
works well with the larger quantity of data available in the DT problem. Deep neural
networks have often shown higher performance due to these advantages [57], but they

still do not perform well enough to overcome the generalisability problem.

1.4 Generalisation and Attribution

One important problem in the field today is generalisation across all of chemical space.
Many papers have reported a discrepancy between high performance on validation
sets and poor performance in generalising across all of chemical space [70, 11, 59,
61, 72, 43, 64]. One of the primary contributing factors to this discrepancy is dataset
bias. Molecules in chemical space tend to be clustered around scaffolds, since sim-
ilar molecules are easier for chemists to synthesize; this issue is known as analogue
bias [70, 59, 72]. Complicating these clustering issues is the fact that active ligands

for a given protein are likely to be similar and therefore clustered together even with
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perfectly unbiased data. In addition, if, due to inadequate sampling, a simple fea-
ture like number of heavy atoms correlates strongly with activity, an ML model can
perform very well while learning a completely useless rule; this is the problem of ar-
tificial enrichment [59, 70]. It is therefore possible for a model to perform very well
on a not carefully designed validation set by simply memorising information about a
particular cluster or scaffold and be unable to generalise to any other scaffold [59, 72].
Generalisation is both crucial for model performance in silico and most useful for ex-
perimentalists, who would like to make predictions about ligands dissimilar to ones

they have produced in the laboratory [50].

Related to issues of generalisation is the problem of attribution and interpretabil-
ity of virtual screening models. Attribution has emerged as an increasingly impor-
tant problem in ML in general, both to make ML models more trustworthy for users
and to prevent the generation of adversarial examples that may harm model perfor-
mance [69, 37]. For chemistry in particular, interpretable models can help guide medic-
inal chemists in the drug discovery process in making refinements to active ligands to
improve other properties [41]. Ideally, attribution could be used for de novo drug de-
sign, wherein models identify fragments predicted to be important for binding and
construct a molecule that is optimally active for a given protein target. However, ac-
curate attribution is difficult for virtual screening models. The hashing step in the
tingerprint process means that a given feature does not necessarily correspond to only
one molecular fragment [58], making standard attribution methods largely useless.
Further, even if attribution is performed successfully, high-performing models are of-

ten found to have learned the wrong binding logic [47].

Generalising in protein space poses yet another challenge. As described above, the
DTI models today do not perform well even on randomly split validation sets. Our
current methods of representing protein targets and training models for them fail to
consistently make predictions in protein space. These results do not account for clus-
tering in chemical space as described previously or for phylogenetic clustering in pro-
tein space. It is crucial that computational scientists tackle this problem so our models
can be truly useful to experimentalists; a model that requires prior identification of

active ligands can only be of limited utility.



1.5 Outline of this Thesis

1.5 Outline of this Thesis

The main results of this thesis consist of three distinct chapters, each of which is an
independent manuscript either under review or being prepared for publication. All
three chapters are linked by the overall theme of addressing the problems discussed
in the previous section.

Chapter 2 focuses on the generalisation problem in chemical space. We define a
new metric for generalisation ability of a given model and demonstrate that standard
ML virtual screening models fail to generalise well. We then examine debiasing al-
gorithms, algorithms designed to reduce clustering and hopefully improve generali-
sation while also providing a better metric for measuring generalisation ability. We
demonstrate that surprisingly, common debiasing algorithms fail to improve general-
isation of our models and do not do a particularly good job of measuring their gen-
eralisation ability. Our work suggests that debiasing algorithms should be used more
carefully and other approaches may be preferred for resolving the generalisation is-
sue. This chapter has been independently published on ChemRXiv and is currently
under review [64].

Chapter 3 examines the generalisation and attribution questions more closely. We
examine the performance of random-matrix-theory (RMT) methods that claim to elim-
inate noise and generalise better with more accurate attributions when compared to
standard models; we find that they do not live up to their promises. Further, we de-
velop a method of attribution based on toy datasets that can be used on any fingerprint-
based model and use it to show serious flaws in standard virtual screening models. We
identify the source of these flaws as spurious correlations in the background screening
library, suggesting that the diversity of the screening library plays an important role
in model attribution.

Chapter 4 looks at the DTI problem and proposes a new framework for developing
DTI models to improve generalisation in protein space. We show that using robust
single protein virtual screening models can significantly improve the performance of
DTI models. In particular, our new models are able to generalise in protein and ligand
space simultaneously, consistently attaining AUCs greater than 0.9 on our test sets.
While issues related to clustering remain, our results suggest a new framework for

developing DTI models.






Chapter 2

Debiasing Algorithms for
Protein/Ligand Binding Data do not

Improve Generalisation

2.1 Introduction

Many recent ML approaches to virtual screening have achieved outstanding success
on benchmark datasets that are randomly partitioned into train and validation sets,
with AUCs (area under the Receiver Operator Characteristic curve) routinely exceed-
ing 0.9 [66, 54, 17, 71, 35, 53, 55, 24]. However, it is unclear whether this impressive
performance indicates that a model that can truly generalise across chemical space,
or instead simply overfits the training data [70, 11, 59, 61, 72, 43]. Since chemical
space contains clusters of molecules around scaffolds, memorizing the properties of a
few scaffolds can be sufficient to perform well, masking the fact that the model may
not generalise beyond close analogues [29, 26]. Further, molecules tested experimen-
tally are generally designed by humans and therefore likely to be easy to synthesize
and similar to previously known binders [11, 33]. Finally, if, due to properties of the
dataset, it is possible to classify the ligands based only on simple properties like num-
ber of hydrogen bonds, classifiers may perform outstandingly well on training data
but be completely unable to make predictions in other parts of chemical space [59].
To counter this limitation, data bias definitions and corresponding debiasing algo-

rithms have been introduced [59, 74, 5, 72]. Two popular bias measures, Maximum
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Figure 2.1.1: Definition of AVE and MUYV Bias. (a) This set is considered biased by
MUYV because actives are clustered and not uniformly embedded in the
inactive decoys. (b) This set is considered biased by AVE, because the
inactives are tightly clustered relative to the active-inactive distance.

Unbiased Validation (MUV) and Asymmetric Validation Embedding (AVE), are illus-
trated in Fig. 2.1.1 [59, 72]. For AVE bias, the bias measure is used by a genetic algo-
rithm to rearrange the train/validation split such that the bias is reduced [72]; MUV
bias is used by a similar genetic algorithm to select a benchmark set with minimal bias,
from which random train/validation splits can be generated [59]. Specifically, MUV
ensures that active ligands are uniformly embedded among inactive ligands according
to some distance metric, while AVE adds the requirement that inactive ligands are not
tightly clustered. Across benchmark datasets for multiple protein targets, both bias
metrics were shown to correlate to model performance, suggesting that heavily biased
datasets provide a falsely optimistic picture of the predictive ability of the trained
model. Furthermore, debiasing was shown to decrease classification accuracy for the
debiased validation set, presumably because the resulting models could not perform

well by simply memorising the training data [72, 59].

Further studies have established that debiasing with simple descriptors, like molec-
ular weight and number of hydrogen bonds, can be used to obtain a more predictive
metric of model performance [62]. This work focused on descriptors that were known
not to be correlated with activity, so any clustering in the space of simple descriptors
had to be a result of bias. We will instead focus on fingerprints like the original AVE
study [72]. Since fingerprints may be correlated with activity even in the true binding
function, we expect to see some clustering that is not a result of bias, which makes

debiasing more difficult.

Debiasing algorithms were originally designed to provide a more realistic metric

10
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for measuring real-world model performance [72, 59]. However, another purported
advantage of models trained using debiased data splits is that they overfit less, so
generalise better to make accurate predictions for novel candidate ligands. Despite
seeming reasonable, the argument for this supposed advantage has a logical flaw: a
model that overfits less will not always perform better at generalising to novel lig-
ands. In this chapter, we develop a framework to measure generalisation ability, and
explicitly test these hypotheses. We assemble data for 189 targets with greater than 500
reported active ligands, and split each dataset into a train set and a distant held-out
test set used to define the far-AUC, a metric of model generalisation (see Fig. 2.2.1a).
We then randomly split the train set to produce a random held-out validation set,
which is used to measure the standard AUC. Despite achieving state-of-the-art AUCs
on the held-out validation sets, our trained ML models struggle to generalise effec-
tively when challenged with the distant held-out test sets. We then apply MUV and
AVE debiasing to our 189 datasets, and use the resulting debiased train sets to build
new models. We find that the debiased models make less accurate predictions for
novel candidate ligands, as illustrated by their performance on the distant held-out
test sets. Further, counter to the stated aim, the performance of our models on the
distant held-out test sets is not well-predicted by their performance on the debiased
validation sets, suggesting that debiasing does not yield a particularly realistic metric

for measuring model performance.

2.2 Methods

We filter protein-ligand binding data from ChEMBL 24.1 [15, 21], acquiring active lig-
ands (ICsp, K;, K, or ECs of less than 1 uM) for each protein target. We acquired data
for inactive ligands from PubChem indexed by UniProt Protein ID [48, 36]. The hand-
ful of cases where ligands were marked both active and inactive by different assays
were eliminated. Some targets have fewer inactives than actives, in which case we
randomly drew inactives from ChEMBL to achieve an even split for every target. This
procedure was repeated every time the algorithm was run, contributing to the error

bars shown in the figures.

We use ECFP6 fingerprints with 2048 bits as the feature set for all models [58]. For
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Figure 2.2.1: (a) Definition of the far-AUC, the AUC using a held-out test set with min-
imum distance of 0.4 from all elements of the training or validation set.
(b) A flowchart depicting the splitting process to generate the far-AUC.
(c) Comparison of the standard model AUC and the far-AUC, a measure
of generalisation. Model predictions are less accurate for the distant held-
out test set than for the validation set, showing that these models do not
generalise.

consistency we use Jaccard distance as the distance metric throughout, computed from
Scipy [34] (note this differs from the specific metric used in MUV [59]). We first ran-
domly split both the actives and inactives for each protein target into a 70% set and a
30% set. Each 30% set is filtered to build distant held-out test-sets , wherein all ligands
are at least 0.4 from every ligand in the 70% set. We observe empirically that these dis-
tant held-out test sets typically have approximately 10% of the total active and 25% of
the total inactive ligands, respectively. Our far-AUC metric measured the performance
of models on this distant held-out test set, which only contains molecules distant from
any molecules (active or inactive) that the model has previously seen. Fig. 2.2.1b sum-

marizes the procedure of generating this held-out test set.

We further randomly split the remaining 70% set for each target into train (80%)
and validation (20%) sets and train Naive Bayes, Logistic Regression, and Random
Forest models using these data splits. All models used were implemented with scikit-

learn [51]. We use no prior for Naive Bayes, C = 1 for Logistic Regression, and 100
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2.2 Methods

trees with a maximum depth of 10 for Random Forest. We do not tune model hy-
perparameters since the focus of our work is the debiasing algorithms. The 3-way
train/validation/test split and the requirement for data points far from the training
set restricted us to the 189 protein targets with greater than 500 active ligands. All
AUCs are measured over 50 replicates to determine error bars. Randomness comes
from the train/validation/test split and (where needed) the selection of inactives. All
error bars are SEM and indicated to 1 ¢ precision.

We follow the original definitions of AVE and MUYV bias [72, 59]. Specifically, given
two sets V, T of molecules (which may be the same) and a similarity threshold d €

[0,1], we define a nearest-neighbor function

1

Sw,ra) = T Y Lo, T) (2.1)
4=
where I[;(v,T) = 1 if the distance from the molecule v to its nearest neighboring

molecule in T that is not itself is smaller than d. We then define a distance function
on sets

1

deD
with D = {0,0.02,...,1}. For AVE bias, let V,,, V;, T,,, T; be the sets of validation actives,
validation inactives, test actives, and test inactives, respectively. Then the AVE bias is

defined as

Bave = Hy,1,) = Huv,1) + Huy,1) — Hu, 1) (2.3)

For MUYV bias, let the benchmark actives be B, and the benchmark inactives be B;.
Then, the MUYV bias is defined as

Bmuv = H(Ba/Ba) - H(Bu,Bi)' (24)

This formulation is equivalent to the original definition of MUV bias.[59] Note that
Hg, p,) # 1 since we do not count the original molecule in Equation 1.

To minimise MUYV or AVE bias we use the implementation developed in the original
AVE paper [72], which largely follows that in the original MUV paper [59]. A num-
ber of random initial train/validation splits are generated; then the mutation phase of

the genetic algorithm involves randomly merging two train/validation splits, moving

13



Chapter 2 Debiasing Algorithms and Generalisation

A B

1.0 S 1.0 Y
o Naive Bayes . i\ o , s i 2% ;
c Logistic 4-"'9 ‘.o* = . ¢ . t‘:.;;y.-t ..‘s_f:#‘
) (XY (%2} . o :.-. e e
% 0.9 Random Forest . AR +f © 0.9 .f.'ﬁ ): 4 a‘&: "
e ks MR AL
] .‘-".?“V ] - 4 . ¢\+ ’-.‘o * N
© -'°t°:'. %4, © '+ ¢ 4 o .
w 0.8 AR >0.8 L0
< v o +’ = '+

ooy . e

E O 7 '.l‘. : ‘+ 5 0 7 . ' 3
—— ey L ——
s SR ' .
U ‘oo N *+ 5 :0
) t -
i: 0.6 L s <F 0.6 Naive Bayes
© ¢ E Logistic
L L Random Forest

085 06 07 08 09 1o %35 06 07 08 09 10

Far-AUC without debiasing

Far-AUC without debiasing

Figure 2.2.2: Impact of debiasing on the far-AUC; points below the diagonal indicate
targets for which debiasing decreased the far-AUC. (a) AVE debiasing re-
duces the ability of the models to generalise. (b) MUV debiasing does not
consistently help the models to generalise. These results suggest that de-
biasing does not improve the ability of the models to generalise to novel
candidate ligands.

compounds between the training and validation sets, and deleting compounds from
either set. The algorithm ran for 300 iterations or until bias was < 0.01, whichever oc-
curred first, and then produced the least biased split. For MUYV bias, the train/validation
splits are replaced by benchmark/non-benchmark splits, and we then perform a ran-

dom train/validation split with 20% validation within the benchmark dataset.

2.3 Results

We first use our framework to test the extent to which ML models are able to generalise
and make accurate predictions for novel candidate ligands. To assess this we compare
the ability of each trained model to accurately classify ligands in (i) the random held-
out validation set, reported by the standard AUC and (ii) the distant held-out test set,
reported by the far-AUC. The distant held-out test sets mimic the real-world need to
make accurate predictions for novel candidate ligands that are distinct from the train-
ing data. The results of our analysis for Naive Bayes, Logistic Regression and Random

Forest models are shown in Fig. 2b. We find that the far-AUC is significantly lower
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2.3 Results

than the standard AUC for all models tested across all 189 target datasets, indicating
that our models do not generalise well. This confirms the hypothesis that generali-
sation is a challenge for ML models trained on protein/ligand binding datasets. Al-
though we have not tested more complex models, it is likely that as the complexity of

the ML model increases, overfitting to the training data will increase.

We next assess the extent to which MUV and AVE debiasing alleviate this issue. The
key question is whether these algorithms remove data biases that prevent the models
from generalising or instead remove useful information that is necessary for the model
to learn. This is a nontrivial question, as both MUV and AVE rely on the inherent
assumption that the metrics being used to measure distances between ligands do not
correlate strongly with the binding activity of the ligand. The ultimate goal of a ML
model is to learn a function of the data features that distinguishes ligands that bind to
a given protein from those that don’t. In contrast, the goal of debiasing is to ensure
that actives and inactives are well-mixed according to some distance metric, which is
itself a function of the data features. If this distance metric happens to be correlated
with the physico-chemical criteria required for binding, then debiasing will remove
important information from the training data, potentially harming the performance
of the model. Unlike the situation for simple descriptors [62], we do expect some

correlation between fingerprint distance and true binding activity.

To address this question we use the distant held-out test sets to compare the existing
models with versions trained using debiased train/validation splits. We evaluate the
effect of debiasing by computing the change in the far-AUC score between the mod-
els trained on the debiased data, and the models trained on the original data for each
target. As shown in Fig. 2.2.2, neither AVE nor MUV debiasing improves the gen-
eralisation ability of the trained models. On average, AVE decreases the far-AUC of
Logistic Regression by 0.024 & 0.030 (mean =+ standard deviation) and that of Random
Forest by 0.021 £ 0.029 (both significant at a p < 0.01 level), while MUV debiasing
decreases the far-AUC of Logistic Regression by 0.028 £ 0.040 and of Random Forest
by 0.024 £ 0.040 (both significant ata p < 0.01 level).

To check whether the far-AUC depends on the extent to which the data were debi-
ased by either MUV or AVE, Figs. 2.3.1a and 2.3.1b show the change in far-AUC as a
function of the final dataset bias achieved by AVE and MUYV, respectively. We find no
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Figure 2.3.1: Relationship between the change in far-AUC achieved by debiasing and
either (a) the final AVE bias or (b) the final MUV bias; we find no corre-
lation. Furthermore we see no improvement in the resulting generalis-
ability as a function of the number of active ligands per target for (c) AVE
or (d) MUV debiasing. These results suggest that neither approach has
much effect for large datasets.

correlation in each case.

We further probe if the number of active ligands for a target indicates whether de-
biasing will prove effective. Figs. 2.3.1c and 2.3.1d show no correlation between the
number of active ligands and the change in far-AUC achieved by debiasing. However,
the magnitude of the change in far-AUC decreases slightly as the number of active lig-
ands increases, suggesting that debiasing has a smaller effect for large datasets. In
addition, we checked whether there was any relationship between the change in the
far-AUC and the number of decoy molecules added for a given target to achieve equal

numbers of active and inactive ligands. Fig. 2.A.1 confirms that there is no correlation.

Our results also allow us to examine the hypothesis that the validation AUC pro-

duced from a debiased dataset is a better predictor of real-world model performance
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2.3 Results

and generalisation ability. In order to do this, we can compare the validation AUC
produced by the debiasing algorithm to the far-AUC on the distant held-out test set.
Fig. 2.3.2a demonstrates that there is significant disagreement between the standard
AUC and far-AUC with AVE debiasing, with an RMS error of 0.19, an increase from
the RMS error of 0.15 between standard AUC and far-AUC without debiasing. There is
some correlation between the validation AUC and the far-AUC with AVE debiasing,
with a correlation coefficient of 0.72, but this is comparable to the correlation coeffi-
cient of the standard AUC and far-AUC without debiasing, which is 0.69. Similarly,
in Fig. 2.3.2b MUV has an RMS error of 0.13 and a correlation of 0.79, a slight im-
provement over the results for the original standard AUC. These results suggest that
validation AUCs from debiasing algorithms are in significant disagreement with the

tar-AUC, and thus likely not good measures of generalisation ability of a given model.
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Figure 2.3.2: Comparison of standard AUC and far-AUC after (a) AVE and (b) MUV
debiasing. Standard AUCs on the validation set are not particularly rep-
resentative of the far-AUC, and therefore of model generalisation ability,
after debiasing.

To better understand these findings, and ask whether there are situations in which
debiasing does improve the ability to generalise, we examine the data generated by
our experiment in more detail. We first examine far-AUC trajectories measured during
debiasing. Figs. 2.B.1 and 2.B.2 suggest that there is a positive correlation between the

tar-AUC achieved and reduction of either the MUV or AVE bias. The jagged behaviour
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Figure 2.3.3: AVE debiasing without deletion. (a) When deletion is forbidden for the
AVE debiasing algorithm, performance improves slightly over that ob-
tained with the standard version. (b) However, debiasing without dele-
tion is worse, on average, then the performance obtained by the models
before debiasing. (c) There is no clear relationship between the change in
far-AUC achieved when deletion during debiasing is forbidden and the
final AVE bias. (d) Standard AUCs on the validation set are not represen-
tative of the far-AUC after AVE debiasing when deletion is forbidden.

seen for both algorithms suggests that certain moves that significantly decrease the

far-AUC are sometimes preferred.

In the case of AVE debiasing, we hypothesised that moves in these trajectories that

decrease the far-AUC correspond to data deletion from both the training and vali-
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dation sets, a move allowed by the genetic algorithm. For MUV debiasing, the only
allowed move is deletion from the benchmark dataset, so this is irrelevant. For exam-
ple, Fig. 2.C.1 shows how the size of the dataset for CHEMBL5508 decreases during
the debiasing process. To evaluate debiasing in the absence of data deletion, we modi-
tied the genetic algorithm to prevent data from being deleted. Fig. 2.C.1 shows that the
modified version of AVE debiasing still succeeds at reducing the bias of the dataset.
Could this provide an approach that better enables the models to generalise? To test
this we repeated our earlier analysis with the modified debiasing algorithms.

As shown in Fig. 2.3.3, we find that forbidding deletion does slightly improve the
generalisation ability of the resulting debiased models for AVE compared to the ver-
sions with deletion. However, even without deletion, AVE decreases the far-AUC of
Logistic Regression by 0.016 £ 0.041 and of Random Forest by 0.017 & 0.044 on aver-
age across the 189 datasets (both significant at a p < 0.01 level). As in the case where
deletion is allowed, Fig. 2.3.3c confirms that there is no relationship between the extent
to which the data were debiased and the change in far-AUC obtained.

We also examined whether the debiasing algorithm proves more capable of mea-
suring the generalisation ability of a model when deletion is forbidden. Our results
in Fig. 2.3.3d show a marginal improvement. The RMS error between the standard
and far-AUC in AVE debiasing drops to 0.12; the correlations between the two also in-
crease to 0.76. However, our results suggest that AVE debiasing does not consistently
measure generalisation ability even when deletion is forbidden.

Overall, our results indicate that it is difficult to predict when AVE or MUV debias-
ing will improve generalisation and whether performances measured under AVE or
MUYV debiasing are representative of real-world model performance. Further work is
needed to determine the conditions under which debiasing has the potential to im-
prove the ability of a model to generalise and make accurate predictions for novel

candidate ligands.

2.4 Discussion

In this chapter we develop a simple far-AUC metric that measures the ability of a

protein-ligand binding model to generalise and make accurate predictions for novel
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candidate ligands. We use this metric to evaluate the AVE and MUV debiasing al-
gorithms that were designed to reduce overfitting to the training data, and thus po-
tentially improve the ability of models to generalise. Our analysis for both AVE and
MUV debiasing in Fig. 2.2.2 finds that debiasing does not systematically improve the
ability of the trained models to generalise, despite the fact that Fig. 2b shows there
is significant room for improvement. Further, our results in Fig. 2.3.2 suggest that
validation AUCs measured after debiasing are not particularly representative of the
far-AUC, suggesting that they do not correlate with real-world model performance or

generalisation ability.

This suggests that debiasing algorithms are not able to accurately distinguish signal,
or features correlated with activity in the true binding function, from bias, or features
correlated with activity due to the limited data we have, and in many cases remove
relevant information from the training data. Our analysis of the debiasing trajectories
suggests that the deletion operation used by the genetic algorithm in both MUV and
AVE debiasing may exacerbate this loss of useful information or signal from the data.
To address this we implemented versions that did not allow data points to be deleted.
This did not result in models that were better able to generalise compared to those

built without debiasing.

Dataset bias is clearly an important issue, particularly in chemistry; however, cur-
rent debiasing approaches need to be applied carefully to ensure that they do not elim-
inate relevant information. Indeed, some clustering among actives is to expected in
tingerprint space, since active ligands for a given protein can have structurally similar
features. It is important to distinguish between this clustering and artificial clustering
that may result from the fact that only portions of chemical space have been explored

by synthetic chemists, or other potential sources of bias.

Another approach is to better understand the regions of chemical space in which
protein-ligand binding models trained using a particular dataset are able to make ac-
curate predictions. Generalisation is challenging for ML models across many contexts,
even when trained with unbiased datasets, so given the highly biased nature of chem-
ical data, expecting protein-ligand binding models to generalise may be ambitious.
Methods that establish the domain of applicability for trained models need to be de-

veloped to provide confidence in those predictions that fall within this domain. This
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2.4 Discussion

approach would have the advantage of avoiding the information/bias distinguisha-
bility problem described above while still allowing the resulting models to generalise

to some degree.
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Appendix: Supporting Information

2.A Change in Far-AUC

We also examined whether there was a relationship between the change in far-AUC

and the number of decoys randomly added as inactives. Fig. 2.A.1 reveals that there

is no such relationship.
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Figure 2.A.1: There is no clear relationship between the change in far-AUC achieved
and number of decoy molecules added to increase the number of inactive
ligands for AVE debiasing either (a) with or (b) without deletion.

2.B Tracking Far-AUC during debiasing

To better understand how the debiasing algorithms operate, we tracked the far-AUC
at each step of the debiasing algorithm for both MUV and AVE bias. The results are
shown in Figs. 2.B.1 and 2.B.2. We see a fairly clear positive correlation in the case of
AVE bias, suggesting that on average biased sets are actually better at generalisation.

This correlation is clearly dominated by overall jagged behavior, suggesting that there
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are certain sequences of moves that dramatically affect generalisation ability and grad-
ually reduce overall AVE or MUV bias. We suspected that some of these moves were
deletions, leading to our analysis of the performance of the AVE debiasing algorithm
without deletion. The overall shape of the trajectory however suggests no particular

way to modify the debiasing algorithm to improve the resulting measured far-AUC.
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Figure 2.B.1: Correlation between MUYV Bias and logistic regression far-AUC tracked
for 5 iterations at each step of the debiasing algorithm for 3 targets. The
jagged behavior observed in Fig. 2.B.1c suggests that certain moves that
significantly worsen model generalisability, but this behavior is not that
common.
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Figure 2.B.2: Correlation between AVE Bias and logistic regression far-AUC tracked
for 5 iterations at each step of the debiasing algorithm for 3 targets. The
clear general positive correlation suggests that biased datasets are better
at generalising. The jagged behavior suggests that certain moves that
significantly worsen model generalisability

2.C AVE Bias and Dataset Size

We examined the relationship between AVE bias and dataset (training + validation)
size after noting that the debiasing procedure consistently preferred to remove points
from both training and validation sets. There is no particularly strong relationship

between a random train/validation split’s AVE bias and the overall dataset size, but

24



2.C AVE Bias and Dataset Size

there is a strong relationship between these two variables for splits produced by the

debiasing algorithm as shown in Fig. 2.C.1a .
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Figure 2.C.1: Analysis of the Relationship between AVE Bias and Dataset Size for
CHEMBL5508. In (a), we observe that as the algorithm proceeds, the
AVE bias shrinks by shrinking the size of the overall dataset (training +
validation). In (b), we observe that it is still possible to debias the dataset
using AVE without deleting points.

Preventing our algorithm from deleting data points was partially successful in debi-
asing the dataset, as shown in Fig. 2.C.1b. These results were consistent across all the
examples we tried. However, as discussed in the main paper, they did not significantly

improve generalisability of our models.
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Figure 2.C.2: There is no clear relationship between the change in far-AUC achieved by
debiasing without deletion and the number of active ligands per target
for AVE debiasing without deletion.

25






Chapter 3

Evaluating Generalisation and
Attribution Ability of Fingerprint-Based
Protein/Ligand Binding Models

3.1 Introduction

Generalisation in ligand space and attribution are two key challenges for single protein
virtual screening models. We have already established that many high-performing ML
models for virtual screening struggle to generalise well far from their training data.
Further, recent studies analyzing how neural network models in particular attribute
their results suggest that even high-performing models often do not learn the correct
rule [47]. Attribution of virtual screening models is particularly important because
models that consistently misattribute can be fooled by adversarial examples and can
mislead medicinal chemists trying to refine potential drug candidates using predic-
tions from the model [47].

Some methods have been proposed to mitigate these issues of generalisation and at-
tribution. In particular, random matrix theory (RMT) has been used to eliminate noise
in chemical data [40]. These methods note that a randomly sampled set of chemical
ligands has a fingerprint covariance matrix whose eigenvalues follow the Marchenko-
Pastur distribution, implying that the covariance matrix would be the identity were it
not for noise due to finite sampling in a large multidimensional space [40]. As such,

any signal found in a set of active ligands would be found in eigenvectors with eigen-
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values above the Marchenko-Pastur cutoff [40]. This observation can be used to de-
veloped a number of RMT-based models, ranging from simple ones with no parame-
ters to using the method as feature selection prior to running some other model [40].
These models claim to improve the generalisation ability of models and be more in-
terpretable than standard models, allowing medicinal chemists to make refinements

using their predictions [40, 41].

In this chapter, we evaluate the ability of virtual screening models to generalise and
attribute their results. We begin by proposing simple, general frameworks for evalu-
ating the generalisation ability and attribution of a particular model. Our framework
for generalisation is based on a distance-based split; our attribution scores are based
on results on toy datasets and simply identify a subset of the fingerprint bits neces-
sary for a model to obtain a particular score, thus bypassing the need for a model to
be differentiable. We then evaluate a number of standard and RMT-based models on
these metrics. Our results clearly establish that high-performing models by AUC on
randomly held-out validation sets often do not generalise well and models that per-
form and generalise well may still not learn the correct binding rule. In particular,
contrary to previous results, we find that RMT-based models perform worse and are
consistently worse at generalisation than standard counterparts, suggesting that the

RMT framework is not functioning as expected.

We then examine why models consistently misattribute on toy datasets despite per-
forming well and propose some solutions that can help improve model performance
overall. Specifically, we demonstrate that the addition of fragment-matched decoys,
decoys that have similar fragments as active molecules but are inactive, can help re-
duce rates of misattribution. Further, we show that a number of misattributions can be
traced to spurious correlations in the dataset that originate in the background, or the
area of chemical space accessible to screens. We suggest some potential approaches
for models to account for these spurious background correlations or for better screen-
ing libraries to be developed that may have fewer correlations. Our results provide a
better understanding of why virtual screening models fail to generalise and attribute

correctly and what steps can be taken to mitigate these issues.

28



3.2 Methods

3.2 Methods

3.2.1 Datasets

We used the same protein-ligand binding data as in our previous work [64]. Specif-
ically, we acquired active ligands for each protein target from ChEMBL 24.1 [15, 21];
our criterion for activity was an ICsg, K;, K;, or ECsg of less than 1 uM. We obtained
inactive ligands from PubChem indexed by UniProt Protein ID [48, 36] and eliminated
the small number of conflicts between the two. Since there were often fewer inactives
than actives, we randomly drew additional decoys from ChEMBL to achieve an even
split for every target. This procedure was repeated for every repetition of the algo-

rithm, contributing to the error bars computed.

Our work on attribution also required the construction of a number of toy datasets.
Our method of constructing these toy datasets was inspired by but not identical to pre-
vious work done on neural networks [47]. Each toy protein had a specified binding
logic requiring that up to 3 fragments be present (called one-element, two-element,
and three-element toy datasets); the fragments that were required were selected ran-
domly from the set of possible fragments in Table 3.A.1. We identified 600 active and
600 inactive ligands from the ZINC12 database [32] that were active per our toy bind-
ing logic to generate the toy dataset. The binding logic we used for each dataset, along
with their names, can be found in Table 3.2.1; the exact SMARTS code used for each

fragment can be found in Table 3.A.1.

For the two-element and three-element toy datasets, we also generated toy datasets
with fragment-matched decoys. These datasets were intended to improve attribution
results by providing our algorithms with decoys that were more closely matched to
the actives. Specifically, for the two-element datasets, we included 200 generic inac-
tives as before, 200 inactives with only the first fragment, and 200 inactives with only
the second fragment. For the three-element datasets, we included 150 generic inac-
tives, 150 inactives with the first two fragments, 150 inactives with the first and third

fragments, and 150 inactives with the second two fragments.
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Table 3.2.1: Binding Logics Used for Construction of the Toy Datasets. These were
used to perform our attribution analysis.

3.2.2 Models

The feature set for all our models was ECFP6 fingerprints with 2048 bits [58]. When we
required a distance metric, we used Jaccard distance as the distance metric computed
from Scipy [34]. We initially tested 7 different models: 4 relatively standard ones and
3 based on random-matrix-theory-related approaches. Details of the models tested

follow:

1. 1-Nearest Neighbor (1-NN): a baseline model that simply picks the nearest lig-

and.
2. Naive Bayes (NB): implemented using scikit-learn [51] with no prior.

3. Logistic Regression (LR): implemented using scikit-learn with C = 1 as the reg-

ularization constant.

4. Random Forest (RF): implemented using scikit-learn with 100 trees and a maxi-
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3.2 Methods
mum depth of 25.

5. Random Matrix Theory (RMT): this is the simplest random matrix theory model
that makes predictions based on distance to the hyperplane spanned by the sig-
nificant eigenvectors in the active correlation matrix [40]. It has no parameters

and completely ignores inactives.

6. Random Matrix Discriminant (RMD): this model upgrades the initial random
matrix theory model by also incorporated correlations in the inactives and using

two distance cutoffs [41].

7. RMT + Logistic (RMT + LR): this model uses random matrix theory as a feature
selection method, picking the significant eigenvectors from the overall correla-
tion matrix of both actives and inactives, and then runs logistic regression with

C = 1 on the ensuing features.

Details about the RMT-based methods may be found in Section 3.A.2.

3.2.3 Evaluation Methods

The first evaluation method we used on our models was a standard validation AUC
(area under the Receiver Operator Characteristic curve) on a randomly held-out vali-
dation set that comprised 20% of the data, with an even split of actives and inactives.
We compared this to the far-AUC, as previously dscribed. We repeated all standard
AUC and far-AUC calculations 50 times to obtain error bars.

Since some of our models were not differentiable, we developed an attribution
method designed to work on any chemical-fingerprint-based method. Our method
relies on the use of SIS (sufficient input subsets), which identifies a sufficient subset
of the input features that would reach a particular score on a given model [7]. Our
feature mask was simply the vector of all Os, i.e. no fragment present. If our model

predicted a probability of x for a given molecule, our threshold was Lllo(?oxj if x was not

a multiple of 0.01 and x — 0.01 otherwise. Thus, given a particular active molecule and
an already trained model, SIS identifies the features of the molecule that are necessary
for the model to infer that it is active, i.e. attain a score close to that predicted by the

model.
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Figure 3.2.1: (a) The Far-AUC is the AUC on a distant held-out test set, used to mea-
sure the generalisation ability of our models. (b) In order to evaluate what
our models were learning, we developed an attribution method relying
on SIS, which determines which bits/fragments are necessary for a par-
ticular molecule to attain a given score on a given pre-trained model. This
was then translated into a visualization via Envision and also into an at-
tribution vector, where each number corresponds to a single atom and
represents how many essential fragments that atom is in. We then devel-
oped a number of attribution scores based on this vector, most notably
the attribution score on a toy dataset which was simply the dot product
with the correct attribution vector.

The next step in our attribution procedure is to translate the features (fingerprint
bits) back into fragments. This is generally impossible because each fingerprint bit
corresponds to multiple fragments. For a particular molecule, rdkit can identify the
relevant fragment or fragments for each bit [39]. A previous graduate student devel-
oped a graphical tool named Envision to visualize the relevant fragments, which was
used for all the visualizations in this chapter.

We next developed a quantitative measure of attribution. For any given pre-trained
model m and a given molecule, we generated an attribution vector v, with one ele-
ment per atom corresponding to the number of fragments containing that particular
atom that were considered significant according to SIS. If a single bit corresponded
to multiple fragments, all were considered significant. For the toy datasets, we also

produced a real attribution vector vg with a 1 on any atom that contained a relevant
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fragment and a 0 otherwise. See Fig. 3.2.1b for a flowchart of the process of obtaining
these attribution vectors.

This allowed us to generate 4 measures of attribution accuracy on our toy datasets.
Vin

%. This score was then normal-

Our attribution score for the model m was the Tl

ized with respect to the attribution score obtained on a model trained with randomly
labeled data to ensure that our attribution scores were not measuring anything irrel-
evant about the structure of the data [1]. The attribution false positive score is the
proportion of nonzero entries in vy, that are zero in vy, i.e. atoms that the model
thinks are relevant but actually are not. The attribution false negative score is the pro-
portion of nonzero entries in vg that are zero in vy, i.e. atoms that the model thinks

are not relevant but actually are. Finally, the comparative attribution score between
Vimy Viny

two models my and my is ——2—;
Vi [ [Vimy ||

this score could be computed for both toy and
real datasets.

Due to the computational expense of the attribution procedure, we ran the attri-
bution analysis on 50 molecules randomly selected that were predicted to bind with
probability at least 0.99 for the real data and 0.95 for the toy data. In this work, we

report both averages and distributions of the attribution scores across the data tested.

3.3 Results

3.3.1 Comparison of Model Performance

We began with a comparison of the standard AUCs of all models on all datasets tested;
see Fig. 3.3.1 for our results. Random forest and logistic regression consistently per-
formed the best, with random forest getting an AUC 0.0004 =+ 0.008 better across all tar-
gets (mean £ 1 standard deviation, not statistically significant). Logistic and random
forest both score roughly 0.006 + 0.012 better than RMT + logistic, which performs
0.0043 £ 0.012 better than Naive Bayes. Naive Bayes’s standard AUC is 0.014 4 0.037
better than that of RMD, which scores 0.043 &+ 0.042 better than RMT. Finally, RMT
performs 0.017 4= 0.049 better than 1-NN under the standard AUC (all other results
statistically significant ata p < 0.01 level).

Random-matrix-theory-based methods in general do not perform as well as their

standard counterparts, suggesting that the random matrix theory framework as cur-
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rently applied is flawed. In particular, the addition of random matrix theory as a
feature selection method does not help logistic regression, and RMD is somewhat con-
sistently outperformed by Naive Bayes, in contrast to previous findings [41]. We also
see high variance in model performance both within the same dataset and across dif-
ferent datasets for low-performing models, so it is possible that a poorer model may
outperform a better one on any particular dataset. In the future, researchers should be

careful to test their models on a large number of datasets to eliminate this variance.

3.3.2 Generalisation

We next evaluated the ability of our models to generalise by comparing their far-AUC
to their standard AUC. As has been found in previous work [64, 59, 72] and as seen
in Fig. 3.3.2, the far-AUC of all models is significantly lower than the standard AUC,
suggesting that our models fail to generalise to distant held-out test sets (all results
statistically significant at a p < 0.01 level). Explicitly comparing the RMT-based mod-
els to the others, we see that the use of RMT worsens the ability of any given model
to generalise. This is most clearly seen with logistic regression: without RMT, the far-
AUC is 0.033 £ 0.035 lower than the standard AUC, but with RMT it is 0.047 4+ 0.050
lower. Thus RMT is not able to fulfill its purpose of generalising successfully to distant
held-out test sets, contrary to previous claims [40, 41].

Just as in Fig. 3.3.1, we compare the far-AUCs of various models in Fig. 3.3.3. Now,
logistic regression is clearly the best model, with an average far-AUC 0.004 & 0.022
better than random forest, which is 0.015 &= 0.034 better than RMT + logistic. RMT +
Logistic performs 0.018 £ 0.041 better than Naive Bayes, which scores 0.048 £ 0.083
better than RMD. RMD performs very similarly to our baseline 1-NN, with a far-AUC
difference of only 0.002 £ 0.068 (not statistically significant), and 1-NN clearly out-
performs RMT by 0.098 £ 0.10 (all other results statistically significant ata p < 0.01
level).

All models struggle to generalise; in particular, the RMT-based methods are clearly
significantly worse than standard methods at generalising, with RMT and RMD un-
able to clearly outperform the baseline 1-NN model. Our results suggest that many
high-performing models with good standard AUCs may not perform as well when

tested in real life, since they may not be able to accurately predict far away from their
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training set.

3.3.3 Attribution

To better understand why our models fail to generalise well, we now turn to the ques-
tion of attribution, i.e. evaluating what our models are learning on a given dataset.
We work with the toy datasets described previously so we can score our models” abil-
ity to attribute. For this analysis, we focused on the four highest-performing models
as evaluated previously: logistic, random forest, Naive Bayes, and RMT + logistic.
Unsurprisingly, our models, especially logistic and random forest, perform outstand-
ingly well on the toy datasets since the logic is entirely fragment-based and there is no
noise. Fig. 3.3.4a demonstrates that many of our models achieve very high far-AUCs.
We note that our toy datasets were significantly less clustered than the real data with
most of the test molecules being far away from the training set, so the far-AUC and
standard AUC are essentially equivalent here. See Section 3.B.3 and Fig. 3.B.13 for a
distance-based breakdown of model performance on the toy datasets.

However, the normalized attribution scores of our models in Fig. 3.3.4 are not good.
Even high-performing models generate attribution scores that span the entire range
[0,1], suggesting that these models are learning something very different from the
intended rule. We also do not see any consistency in which models perform better
than others on different datasets, which suggests that the accuracy of the rule any
given model learns is highly dataset-dependent.

In order to better understand this data, we split the attribution score into false posi-
tives and false negatives in Fig. 3.3.5. Here we see some overall model-related trends:
in particular, logistic regression tends to identify fewer false positives and more false
negatives, especially on the three-element datasets, while the other models tend to
identify more false positives and fewer false negatives. As before, there is still large
variance between datasets and between molecules for the same model, suggesting that
the validity of the rule learned by any particular model is highly questionable.

We directly examine some of the attribution images produced by our analysis in
Fig. 3.3.6. This section only displays a few attribution images for the toy dataset Three-
Elem1; the others are provided in Figs. 3.B.1 - 3.B.3. We see that logistic regression

tends to highlight relatively few atoms, often omitting fragments that are important,
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Figure 3.3.1: Comparison of Validation AUCs on ChEMBL Datasets for Various ML
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Models. Our most consistently high-performing models are logistic re-
gression and random forest. Next, in order of performance, are RMT
+ logistic, Naive Bayes, Random Matrix Discriminant (RMD), Random
Matrix Theory (RMT), and finally 1-nearest neighbor. Our results sug-
gest that the random matrix theory framework does not aid in prediction

since RMT-based models consistently underperform compared to stan-
dard models.
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Figure 3.3.2: Comparison of Far-AUC and Standard AUC for (a) standard models and
(b) RMT-based models. Our results indicate that most models have much
worse far-AUCs, i.e. AUCs on a distant held-out test set, as compared to
standard AUCs on a validation set; thus, most machine learning models
fail to generalise well on protein/ligand binding data. RMT-based mod-
els are particularly bad, suggesting that the RMT framework does not aid
generalisation overall.
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Figure 3.3.3: Comparison of Far-AUCs on ChEMBL Datasets for Various ML Mod-
Our results indicate that logistic regression is the best model at
generalising on protein/ligand binding data, followed by random forest,
RMT + logistic, Naive Bayes, RMD, 1-NN, and RMT, in that order. The
RMT-based methods are particularly bad, suggesting that an RMT-based
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Figure 3.3.4: (a) Comparison of Attribution Scores to Far-AUC on Toy Datasets. The at-
tribution score is a measure of how close the model’s attribution is to the
real rule for a particular molecule; the distributions shown here are distri-
butions over molecules within a given dataset. Even models that gener-
alise well have poor attribution scores, suggesting that they are learning
the wrong rule. (b-d) Normalized Attribution Scores for Model on (b)
One-Element Datasets, (c) Two-Element Datasets, and (d) Three-Element
Datasets. There is little consistency in which models have high attribu-
tion scores, suggesting that no model can consistently learn the correct

rule for a given dataset.



Chapter 3 Generalisation and Attribution

A

1.0 1.0
BN Logistic I Logistic
[ RMT + Logistic [ RMT + Logistic
I Random Forest o I Random Forest
°>J 0.8 I Naive Bayes >08 I Naive Bayes
= ©
8 g
o z
o 0.6 006
i) [}
& £
c
So4 S04
> -
2 3
~ b=
- f—
Zo02 Zo2
0.0 0.0
OneElem0 OneElem1 OneElem?2 OneElem3 OneElem0 OneElem1 OneElem2 OneElem3
Dataset Dataset
1.0 1.0
I Logistic I Logistic
[ RMT + Logistic [ RMT + Logistic
B Random Forest B Random Forest
°>-’ 0.8 Il Naive Bayes q>" 0.8 I Naive Bayes
0 ]
o o
[ [
v 0.6 o 0.6
v v
© ©
w w
c c
904 9S04
- -
> >
= =
= =
B B
< 0.2 < 0.2
0.0 0.0
TwoElem0O TwoElem1 TwoElem2 TwoElem3 TwoElem0 TwoElem1 TwoElem2 TwoElem3
Dataset Dataset

1.0

1 o o
> o ©

Attribution False Positive

o
N

E

1.0
B Logistic B Logistic
[ RMT + Logistic [ RMT + Logistic
I Random Forest o I Random Forest
Il Naive Bayes > 0.8 Il Naive Bayes
®
(o)
2
o 0.6
0
©
w
So4
=
>
=
=)
g 0.2
ThreeElem0 ThreeElem1 ThreeElem2 ThreeElem3 0.0 ThreeElem0 ThreeElem1 ThreeElem2 ThreeElem3
Dataset Dataset

Figure 3.3.5: Attribution False Positive (a, ¢, e) and False Negatives (b, d, f) for One-
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Element (a-b), Two-Element (c-d), and Three-Element (e-f) Datasets. We
observe higher rates of false negatives, atoms that the model misat-
tributes as relevant, in logistic regression, especially on three-element
datasets. The other models in contrast have higher rates of false positives.
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while the other models tend to highlight irrelevant atoms; this agrees with the attribu-

tion false positive and false negative results shown previously.
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Figure 3.3.6: Adversarial Examples for Toy Dataset ThreeElem1. The logic for this
dataset is benzene, alkyne, and hydroxyl. The left molecule is the attribu-
tion image for the specified model and molecule. The right image is an
adversarial example constructed based on misattributions in the attribu-
tion image, usually by modifying an attribution false negative to generate
a false negative result. The adversarial examples indicate that our attri-
bution method is correctly identifying flaws in model performance.

Our attribution results call into question the validity of using these models to phys-
ically interpret predictions or to garner medicinal chemistry insight for further refine-
ment of predictions. In order to further establish that our attribution results did cor-
respond to model performance in some way, we generated adversarial examples for

each molecule; these are shown in Fig. 3.3.6. These examples took advantage of mis-
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attributed atoms. For example, if a model predicted a false negative attribution for a
particular atom, we perturbed it to generate a related inactive molecule that the model
would falsely predict as active. Similarly, if the model predicted false positive attri-
bution for a particular atom, we perturbed it to generate a related active molecule
that the model would falsely predict as inactive. The structure of SIS makes it signif-
icantly easier to generate adversarial molecules using attribution false negatives, so
most examples fall in that category. We observe that it is relatively easy to generate
an adversarial example for every misattribution, suggesting that our attribution scores
do correspond to decreases in performance beyond simply hindering interpretability.

We will now examine some of the reasons behind misattributions, looking at both

false negative and false positive results.

Attribution False Negatives: Fragment-Matched Decoys

To understand misattributed false negatives, we look first at the features most corre-
lated with activity. Fig. 3.3.7 displays the top 10 such features for the dataset Three-
Elem1, where the binding logic requires a benzene, alkyne, and hydroxyl. The first 4
features correspond to the alkyne, but we then see other functional groups show up in-
stead of the benzene and the hydroxyl. The hydroxyl does show up at the 9th feature,
but we do not see the benzene. The lack of benzene explains why many models fail to
place high weight on it, as seen by the attribution examples provided in Fig. 3.3.6. We
can see similar logic for the other toy datasets; see Figs. 3.B.7, 3.B.9, and 3.B.11.

It is difficult for our models to conclude that benzene is relevant for the binding logic
simply because many inactive molecules in our dataset already have benzene. In order
to aid our models, we can add fragment-matched decoys: decoys that have some,
but not all, of the fragments required for binding, as detailed previously. Adding
fragment-matched decoys immediately boosts benzene to the second most correlated
feature in Fig. 3.3.8, suggesting that our algorithms may learn a better rule. Similar
logic holds for the other toy datasets; see Figs. 3.B.8, 3.B.10, and 3.B.12, and Section
3.B.2.

In Fig. 3.3.9, we see the impact of adding fragment-matched decoys to our dataset.
The graphs on the left demonstrate that the number of attribution false negatives dra-

matically decreases upon addition of fragment-matched decoys. This does result in
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Figure 3.3.7: Top Features Correlated with Activity from Toy Dataset ThreeElem1. The
features are ranked by correlation with activity with the correlations with
activity listed below the rank. The logic for this dataset is benzene,
alkyne, and hydroxyl. In the dataset without fragment-matched decoys,
we see that alkyne ranks very highly, but the hydroxyl is much lower
ranked and the benzene does not appear at all. This explains why models
have trouble learning that the benzene is important for binding.

a significant increase in normalized attribution score, as shown in the graphs on the

right. However, our models are still not perfect, as they still have plenty of attribution

false positives.
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Figure 3.3.8: Top Features Correlated with Activity from Toy Dataset ThreeElem1 with
Fragment-Matched Decoys. The features are ranked by correlation with
activity with the correlations with activity listed below the rank. The
logic for this dataset is benzene, alkyne, and hydroxyl. Adding fragment-
matched decoys helps, but there are still a number of false positives, like
the ether group that that is the third-ranked feature.

Identifying adversarial examples for attribution false positives is trickier, since our
attribution method does not tell us how to change a particular atom to make the model

consider it no longer significant. Regardless, Fig. 3.3.10 demonstrates that, while more
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Figure 3.3.9: Effect of Adding Fragment-Matched Decoys on (a, ¢, e, g) attribution false
negatives and (b, d, f, h) normalized attribution score for Three-Element
Toy Datasets (Dataset 0 is (a-b), 1 is (c-d), 2 is (e-f), 3 is (g-h)). Adding
fragment-matched decoys significantly decreases the rate of attribution
false negatives consistently and does improve overall attribution scores.
However, the attribution scores are still not perfect due to high rates of
false positives.
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difficult, it is still possible to generate large numbers of adversarial examples by hand;
see Figs. 3.B.4 - 3.B.6 for the other toy datasets. Thus adding fragment-matched de-

coys is necessary but not sufficient to improve the overall attribution accuracy of our

models.
Original Adversarial
OH
y O Actual: 0.0
Logisti h ] J
ogistic \ O R Prediction: 0.74

OH
Q a O O Actual: 0.0

Naive Bayes q
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@ Y o Y
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Random Forest
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Figure 3.3.10: Adversarial Examples for Dataset ThreeElem1 with Fragment-Matched
Decoys. The logic for this dataset is benzene, alkyne, and hydroxyl. The
existence of these adversarial examples indicates that our models are
still failing to learn the correct rule. False positive adversarial examples
are more difficult to generate but still possible.

Further, the general procedure used in this step to add fragment-matched decoys is
impossible in practice, because real datasets do not provide us with information about
the binding logic of the protein in question. However, our results suggest that screen-
ing a variety of molecules with slightly different fragments is valuable for improving

the attribution accuracy of protein/ligand binding models.
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Attribution False Positives: Background Correlations

To understand misattributed false positives, we begin by examining the features most
correlated with activity in Fig. 3.3.7. We see a number of ethers that connect alkynes
to benzenes or to alcohols; the alkynes, benzenes, and alcohols are part of the binding
logic, but the ether is not. Similarly, in Figs. 3.3.6 and 3.3.10, we see ethers incorrectly
included in the attribution logic. This suggests that some of the attribution false posi-
tives are due to features highly correlated with activity that are not part of the binding
logic.

Many of these features include multiple fragments of the binding logic: for example,
the group (2-propyn-1-yloxy)benzene, which contains both a benzene and an alkyne
joined by an ether, helps reinforce the presence of both the benzene and alkyne. How-
ever, this encourages our models to learn larger fragments which are correlated with
but not part of the binding logic. We do not want our models learning that the ben-
zene and alkyne must be found within the group (2-propyn-1-yloxy)benzene for the
molecule to be considered active. Worse, often these larger groups have higher cor-
relations than actual elements of the binding logic, increasing the likelihood that our
models learn the wrong rule along the way.

Since the attribution false positives can be understood purely in terms of correlation
with activity, they must fundamentally be a property of the dataset and not of the
model in question. In particular, these larger features are likely highly correlated with
features that are relevant for activity, like benzene or alkyne. Given our construction of
the toy datasets, these inherent spurious correlations could only have arisen because
they were already present in the background ZINC12 dataset. Thus we now look at
the background correlation.

In order to compute the background correlation, due to high rates of bit collision
across the entire ZINC12 dataset [28], we used unhashed ECFP6 fingerprints. We then
took a random sample of 4000000 molecules out of the dataset to compute the corre-
lation matrix. Fig. 3.3.11 compares the dataset correlation to the background ZINC12
dataset correlation for the 20 features most correlated with activity in each dataset.
Due to the computational expense of computing the entire background correlation
matrix, we only focused on these top 20 features for each dataset.

Our results indicate that the dataset correlations and the background correlations
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Figure 3.3.11: Correlation Matrices for the Background Dataset Compared with Toy
Datasets. For each figure, left is a heatmap of the toy dataset correlation
matrix in the top right and the background dataset correlation matrix in
the bottom left. The right is a scatter plot of the correlations. (A, C, E, G)
are original datasets, (B, D, F, H) include fragment-matched decoys. (A-
B) are ThreeElem0, (C-D) ThreeElem1, (E-F) ThreeElem2, (G-H) Three-
Elem3. We observe that the toy dataset correlation and background cor-
relation are often closely related, with many spurious correlations in the
toy datasets arising from the background. Correlations that are in the
dataset but not in the background are useful for determining the correct

binding logic for each dataset.

are closely related. A number of spurious correlations in the dataset are due to sim-

ilar correlations in the background; this generates the cloud of points surrounding
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the y = x line in the scatterplots of Fig. 3.3.11. Other correlations appear only in the
dataset and are not present in the background; this generates the cloud of points sur-
rounding the y-axis in the scatterplots of Fig. 3.3.11. The goal of our models should be
to distinguish between the spurious correlations arising from the background and the
legitimate correlations that hint at the actual binding logic.

Successfully distinguishing between spurious and legitimate correlations does help
uncover the correlations that correspond directly to the binding logic. We normalized
the correlations by dividing the dataset correlation by the background correlation and
looked at the pairs of features that had the highest mutual correlation for the dataset
ThreeElem1 (without fragment-matched decoys). The top correlation was between
features 2 and 17, which includes both an alkyne and a hydroxyl. The second corre-
lation was between features 9 and 19, which includes both a hydroxyl and a benzene.
The third correlation was between 18 and 4, which also corresponds to both an alkyne
and a hydroxyl. The fourth correlation was between features 2 and 13, which corre-
sponds to an alkyne and a benzene. Thus for our toy datasets correlations that occur
much more strongly in the toy dataset than in the background do directly correspond

to the binding logic used to build the dataset.

Comparison to Real Datasets

In order to verify that attribution results on our toy datasets are somewhat similar to
those on real datasets, we examined comparative attribution scores. As mentioned
previously, it is impossible to compute a real attribution score on a real dataset since
we do not know the inherent binding logic. However, we can compare comparative
attribution scores. Fig. 3.3.12 shows histograms of the comparative attribution scores
on the toy data and on real datasets for high-performing and high-generalising models
only (specifically a standard AUC and far-AUC of at least 0.99).

We see similar degrees of disagreement between the models on the toy datasets
and on the real datasets. If two high-performing models like logistic regression and
random forest disagree on the attribution logic, it suggests that many of the issues
described above on the toy datasets likely plague attribution analysis on real datasets.
In particular, we know that at least one of the two models must be learning the wrong

logic, even though both performed and generalised very well. Our results on the toy
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Figure 3.3.12: Histograms of Comparative Attribution Scores on Toy and Real Data be-
tween (a) logistic and Naive Bayes, (b) logistic and random forest, (c) lo-
gistic and RMT + logistic, (d) Naive Bayes and random forest, (e) Naive
Bayes and RMT + logistic, and (f) random forest and RMT + logistic.
Comparative attribution scores measure how closely two models agree
on the attribution for a particular molecule. Our results show similar
disagreement between models on both the real and the toy data, sug-
gesting that our conclusions on the toy datasets would also hold on real
datasets.
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datasets suggest that it is likely both models have fallen victim to different spurious
correlations in the data and are learning the wrong rule on the real data as well. It
is also likely possible to generate adversarial examples similar to the ones generated

above on the toy data.

3.4 Conclusions

Our results suggest a number of important cautionary notes about the success of
fingerprint-based protein/ligand binding models. We have shown several examples
of models that perform well which do not generalise well, suggesting that the valida-
tion AUC is not a particularly useful metric of performance and distance-based splits
like the far-AUC should be used more often.

Further, all models, even those that perform and generalise well, may not learn the
correct rule due to dataset bias. Explicit testing with toy datasets like those constructed
in this chapter can help distinguish between models that can and cannot perform at-
tribution correctly. Correct attribution is important both because scientists would like
to use interpretable models to make medicinal chemistry decisions later in the drug
development process and because incorrect attribution can allow relatively easy gen-
eration of adversarial examples that drastically reduce model performance. Prior to
using any model for either of these purposes, it should be tested on toy datasets to
ensure that it does consistently learn the correct rule.

In particular, contrary to previous claims, the RMT-based framework that was claimed
to aid in generalisation and attribution at present is unable to outperform standard
models. Distinguishing between signal and noise in the dataset is a good idea, but the
implementation needs further research before it can be used in practice.

Our analysis of the reasons behind attribution false positives and false negatives
suggests that the primary reason behind many of them is bias inherent in the dataset.
We demonstrated that attribution false negatives can be mitigated by adding fragment-
matched decoys. A corresponding approach on real datasets would be to identify in-
active molecules with similar fragments as actives and add those to the training set.
This may worsen performance on validation sets but improve attribution and gener-

alisation, just as property-matched decoys can aid models based on physico-chemical
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features. Collecting this data would require a more diverse screening library that con-
tained many molecules with different fragments and in particular better selection of
inactives.

Understanding attribution false positives is more difficult. We have shown that
they largely originate from spurious correlations already present in the background
data that cause various fragments to be incorrectly correlated with activity in the toy
dataset. Thus the key to understanding false positives is to examine the correlation
structure of the background dataset. There are two potential approaches here: change
the background dataset, i.e. the screening library, to eliminate these correlations, or
adjust our models so they account for those correlations in training.

The second approach is likely the simpler one. We have demonstrated that nor-
malizing by dividing by the background correlation correctly identifies the binding
logic in a toy dataset. It remains to develop models that accurately account for this
background correlation.

The first approach is slightly more complicated. There are practical difficulties asso-
ciated with running a high-throughput screen on a different screening library possibly
including expensive or difficult-to-synthesize molecules, so all molecules in any new
proposed screening library would have to remain relatively easy to synthesize. Fur-
ther, even a perfectly diverse chemical dataset would possess a base-rate correlation
due to the correlation in fingerprint bits from fragments that are subfragments of oth-
ers. We must compute this base-rate correlation and distinguish it from the correla-
tion due to dataset bias. Then, we must design a fragment library that only possesses
the base-rate correlation. This will allow us to eliminate spurious correlations in our

dataset and minimize attribution-related errors.
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Appendix: Supporting Information

3.A Supplementary Methods

3.A.1 Toy Dataset Construction

The exact SMARTS string used to match each of the fragments for the toy datasets may
be found in Table 3.A.1.

Fragment | SMARTS Code
C=——=C C=C
© cleccccecd
7 NF
K)\) c12cceeclecec2
C—NH, C[NH2]
(@)
¢ ¢ coc
C—F CF
C—OH C[OH]
C=—=0 C=0
C==C C#C

Table 3.A.1: SMARTS Code Corresponding to Each Fragment Used in Toy Datasets.

3.A.2 Random Matrix Theory Based Methods

This section provides a description of the random-matrix-theory-based methods tested

in this work.

1. Random Matrix Theory (RMT). We followed the exact algorithm from the origi-
nal RMT paper [40]. Specifically, given a dataset of n1; actives each with p = 2048
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tingerprint bits, we construct the n, x p active data matrix A, . We eliminate re-
peated columns from A, as well as columns that are constant (either 1 or 0) and

: : : AT A
normalize to z-scores. We then compute the correlation matrix C; = —g—.

We then compute the eigenvalues and eigenvectors of this correlation matrix
2
. . . p
and select eigenvectors corresponding to eigenvalues A, > (1 + ”E) , the
Marchenko-Pastur bound. These eigenvectors span a hyperplane V.. For a given
unknown ligand u (in the scaled coordinates), we may now compute its projec-
tion onto V., uy, . A ligand is predicted to be active if ||[u —uy, || < € for a given

threshold €, which may be varied to obtain an ROC curve.

. Random Matrix Discriminant (RMD). We followed the exact algorithm from the

original RMD paper [41]. This also accounts for inactives in the algorithm above.
Specifically, we also create an inactive data matrix A_ of the n_ known inac-
tives and compute the normalized correlation matrix C_ in the same fashion.
After filtering using the Marchenko-Pastur distribution, we obtain a second hy-
perplane V_ and a second projection uy . A ligand is predicted to be active if

lu —uy, || < [Ju—uy_|| + € for a given threshold e.

. RMT + Logistic. We may also use the random matrix theory method as a fea-

ture selection method. In this case, we use the combined data matrix A, includ-
ing both actives and inactives. Applying the same steps as above, we obtain
eigenvectors corresponding to eigenvalues above the Marchenko-Pastur thresh-
old. We then use the projection of our unknown ligand u onto each individual
eigenvector as a new feature set to train a model, in this case logistic regression,

on.

3.B Supplementary Results

3.B.1 Additional Adversarial Examples

We provide additional adversarial examples for the other three-element toy datasets,

as well as the datasets with fragment-matched decoys. The adversarial examples for

the original datasets can be found in Figs. 3.B.1, 3.B.2 and 3.B.3. The adversarial exam-
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ples for the datasets with fragment-matched decoys can be found in Figs. 3.B.4, 3.B.5,
and 3.B.6.

It is relatively easy to use our attribution method to manually generate adversar-
ial examples for each individual molecule. These results suggest that our attribution
method does correspond to misclassifications by our models. Generating adversarial
examples becomes more difficult for datasets with fragment-matched decoys due to
the necessity of using attribution false positives. However, we are still able to consis-

tently generate adversarial examples for each model.

Original Adversarial

oH OH Actual: 0.0

Logistic _‘__Q——:-——\ _‘__O——‘:_—\ o
N NH+ Prediction: 0.96

Y OH Actual: 0.0

Naive Bayes 4—-@"—:—"\ = -~
N Prediction: 1.00

OH Actual: 0.0

OH
Random Forest -Q——@":’\ _—
NH2+ o Prediction: 0.72

Actual: 0.0

oH OH
RMT + Logistic _g_@—ED—\ _4_@%\ -
NHz+ NH Prediction: 1.00

Figure 3.B.1: Adversarial Examples for Toy Dataset ThreeElem0. The logic for this
dataset is benzene and alkyne and amino. The existence of these adver-
sarial examples suggests that our attribution method is correctly identi-
tying flaws in model performance.
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Figure 3.B.2: Adversarial Examples for Toy Dataset ThreeElem2. The logic for this
dataset is fluorine and alkene and benzene. The existence of these adver-
sarial examples suggests that our attribution method is correctly identi-
tying flaws in model performance.
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Original Adversarial

Actual: 0.0

Logistic o
Prediction: 0.95

Actual: 0.0

Naive Bayes o
Prediction: 1.00

Actual: 0.0

Random Forest L
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O
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CI\N Prediction: 0.96

Figure 3.B.3: Adversarial Examples for Toy Dataset ThreeElem3. The logic for this
dataset is benzene and ether and amino. The existence of these adversar-
ial examples suggests that our attribution method is correctly identifying
flaws in model performance.
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Original Adversarial
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Figure 3.B.4: Adversarial Examples for Toy Dataset ThreeElem0O with Fragment-
Matched Decoys. The logic for this dataset is benzene and alkyne and
amino. These adversarial examples are more difficult to generate due
to the inclusion of fragment-match decoys, but our models are still not
consistently learning the correct rule.
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Figure 3.B.5: Adversarial Examples for Toy Dataset ThreeElem2 with Fragment-
Matched Decoys. The logic for this dataset is fluorine and alkene and
benzene. These adversarial examples are more difficult to generate due
to the inclusion of fragment-match decoys, but our models are still not
consistently learning the correct rule.
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Figure 3.B.6: Adversarial Examples for Toy Dataset ThreeElem3 with Fragment-
Matched Decoys. The logic for this dataset is benzene and ether and
amino. These adversarial examples are more difficult to generate due
to the inclusion of fragment-match decoys, but our models are still not
consistently learning the correct rule.
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3.B.2 Top Features Correlated with Activity for Other Datasets

We can also examine the claim that attribution false negatives partially arise from fea-
tures incorrectly correlated with activity on other datasets. The top features for the
datasets without fragment-matched decoys are in Figs. 3.B.7, 3.B.9, and 3.B.11 and for
the datasets with fragment-matched decoys in Figs. 3.B.8, 3.B.10, and 3.B.12.

We see fairly consistently that some of the fragments in the logic do not appear in
the top features list for the datasets without fragment-matched decoys. Benzene is
particularly troublesome across all of the datasets. Adding fragment-matched decoys
consistently helps models by increasing the ranking of features that are actually in the
logic.

However, we also see spurious features: features that are not in the logic, but are still
highly correlated due to correlations in the background. Many of these are a result of
synthetic moieties used as building blocks that happen to contain one or more features
found in the logic and are therefore highly correlated with activity. This problem is not
resolved simply by adding fragment-matched decoys; as explained in the main text,

looking at background correlation rates is key.

3.B.3 Toy Model AUC as a Function of Distance

In order to examine generalisation ability of our models on the toy datasets, we com-
puted the AUC as a function of distance in Fig. 3.B.13. For this step, we bucketed the
test set into 5 equal-size bins based on nearest-neighbor distance to the training set. We
computed the AUC of our models on each of these smaller test sets, eliminating test
sets with fewer than 5 actives or inactives. We generally see that our models perform
worse as the distance from the training set increases, implying that our models are
worse at generalising. Just as for the real data, we generally see that logistic regression
and random forest are the best at generalising.

However, there is one important difference between the toy data and the real data:
the toy data is significantly less clustered than the real data is. Our graphs in Fig. 3.B.13
indicate that the average distance in the smallest bucket is already generally greater
than 0.4, whereas for the real data this was the cutoff we used for the far-AUC and

most actives were below that cutoff. Thus the toy data test sets are farther from the
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Figure 3.B.7: Top Features Correlated with Activity for Toy Dataset ThreeElem0. The

logic for this dataset is benzene and alkyne and amino. We see alkyne
and amino appear repeatedly, but benzene only shows up as a neighbor
to the alkyne group, and an extraneous ether appears higher than the
benzene.

training set than the real data is. This is why the far-AUC of the toy datasets is es-

sentially identical to the standard-AUC. Given that our models perform well on the

toy datasets’ test sets, our attribution results suggest that even models that generalise

reasonably well can fail to learn the correct binding logic.
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Figure 3.B.8: Top Features Correlated with Activity for Toy Dataset ThreeElem0 with

Fragment-Matched Decoys. The logic for this dataset is benzene and
alkyne and amino. We now see both benzene and alkyne rank fairly
highly, but the same extraneous ether group is still present.
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Figure 3.B.9: Top Features Correlated with Activity for Toy Dataset ThreeElem2. The
logic for this dataset is fluorine and alkene and benzene. We see fluorine
appear repeatedly and alkene appear once, but spurious CF3 groups also
show up, and benzene only appears when attached to a CFs.
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Figure 3.B.10: Top Features Correlated with Activity for Toy Dataset ThreeElem2 with
Fragment-Matched Decoys. The logic for this dataset is fluorine and
alkene and benzene. All three elements of the logic do appear, but we
still see spurious highly correlated CF3 groups.
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Figure 3.B.11: Top Features Correlated with Activity for Toy Dataset ThreeElem3. The
logic for this dataset is benzene and ether and amino. Amino and ether
appear several times, but benzene does not appear in the top features.
The first feature is actually an amino group; the other branched alkane
is an example of bit collision which could confound model results.
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Figure 3.B.12: Top Features Correlated with Activity for Toy Dataset ThreeElem3 with

Fragment-Matched Decoys. The logic for this dataset is benzene and
ether and amino. All three elements of the logic do appear and we see
few extraneous elements aside from the example of bit collision noted
earlier.
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Chapter 4

Using Single Protein/Ligand Binding
Models to Predict Active Ligands for

Previously Unseen Proteins

4.1 Introduction

ML-based virtual screening campaigns for a single protein target rely on the existence
of preliminary experimental screening data that identifies active and inactive ligands
for that target, but that can be costly and time-consuming to obtain. Models that pre-
dict global drug-target interactions (DTI) aim to remove this bottleneck by predicting
the interactions between multiple protein targets and multiple candidate ligands or
drugs [9, 57, 52, 19]. We consider a matrix of all interactions between a given set of
small molecule ligands, and a given set of protein targets as illustrated in Fig. 4.2.1.
These models use preliminary experimental data for some subset of the ligands and
targets, together with computational descriptors of both the protein targets and the
small molecule ligands to predict this matrix. The goal is to build models that gen-
eralise and can accurately predict interactions that involve either previously unseen
ligands or protein targets, or in the most challenging case interactions in which no ex-
perimental data is available for either the protein target or the small molecule ligand.
Such models would enable for example the prediction of active ligands for protein tar-
gets for which no prior screening data is available [19, 9]. If successful, these models

would be particularly useful in the prediction of off-target effects for a given drug, and
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Chapter 4 DTI Models and Generalisation to Unseen Proteins

would further enable a better understanding of their polypharmacology.

A variety of approaches have been developed to use machine learning to build
models for DTI prediction. They can be broadly classified into similarity-based and
feature-based methods, depending on what information they use about the given
proteins and ligands and how this information is encoded. Similarity-based meth-
ods make predictions based entirely on the matrix that describes the similarity be-
tween different proteins and ligands. Typically a sequence similarity metric is used
for proteins and the Tanimoto coefficient, which describes 2D structural similarity,
is used for the ligands [19, 9]. One simple successful approach is regularized least
squares (RLS) which uses kernel ridge regression to make predictions for proteins
and ligands that are not contained in the training data [67]. Matrix factorization ap-
proaches have also been introduced such as collaborative matrix factorization (CMF)
and weighted graph-regularized matrix factorization (WGRMF) which aim to factor
the protein/ligand binding matrix as a product of lower-rank matrices that conform
to the given similarity matrices [76, 20]. Feature-based methods use standard ma-
chine learning algorithms such as decision trees or neural networks on a given fea-
ture set. Popular options include structural fingerprints for ligands and amino acid or
dipeptide one-hot frequency counts for proteins [19]; more physicochemical descrip-
tors have been used for proteins whose structure is known [57]. All of these methods
attempt to predict the entire DTI matrix in one step, using all of the available informa-

tion at the same time.

However, performance analyses of these methods using standard benchmark datasets
demonstrates that in many cases they struggle to generalise in either protein space or
ligand space alone [19]. Specifically, when interactions involving a specific protein or
ligand are not present in the training data, existing methods often struggle to make
accurate predictions. The difficulty of generalising to previously unseen ligands is
particularly surprising, since many virtual screening models successfully solve this
problem without data about related proteins [13]. The most difficult and most inter-
esting test case of generalising in both protein and ligand space simultaneously has

rarely been tried in the literature due to poor model performance [19].

In this chapter, we introduce a preprocessing step that uses robust single protein/ligand

binding models to improve the accuracy of DTI models when generalising within the
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space of small molecule ligands. We show that this preprocessing step results in im-
provements for a wide variety of DTI models on a number of datasets. Most impor-
tantly, our method makes it possible to tackle the most challenging case involving
simultaneous generalisation to both unseen drugs and unseen targets with reason-
able accuracy. Our results suggest that, surprisingly, additional binding data about
related proteins does not help make better predictions of interactions between unseen
ligands and known proteins. However, the additional data generated by a single pro-
tein/ligand binding model is crucial for the accuracy of DTI models. This shift in

perspective should significantly improve the performance of DTI models.

4.2 Methods

4.2.1 Dataset Construction and Problem Set-up

The dataset analyzed here is based on the gold-standard dataset developed by Yaman-
ishi et al. [75], which we have updated to reflect the vast quantity of protein/ligand
binding data that is now available. We took the list of protein targets from Yaman-
ishi’s original work and found active ligands from ChEMBL 24.1 [15, 21] by filtering
for compounds with an ICsg, K;, K4, or EC5q of less than 1 pM. Targets with fewer than
20 active ligands in ChEMBL were eliminated. To reduce computational run times for
the models, the enzyme dataset was split into a kinase dataset and an other enzyme
dataset. Inactive ligands were acquired from two sources: inactive ligands labeled on
PubChem indexed by UniProt Protein ID [48, 36] and for targets with a DUD-E de-
coy set, some of the inactives from the DUD-E set were included [49]. To ensure a
reasonable balance of actives to inactives, we also added a randomly selected set of
500 decoys per run; these decoy ligands were selected to not be in any previous set
of ligands, either active or inactive. We assumed that these decoys did not interact
with any of the given targets. Unlike previous work [19], we did not assume in either
training or testing our models that any other unknown interactions between proteins
and non-decoy ligands were inactives, since actives for a given protein target may be
active for related proteins. Some basic statistics about the size of the datasets may be
found in Table 4.A.1.

We next split our dataset into training and test sets. In order to explicitly test our
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Chapter 4 DTI Models and Generalisation to Unseen Proteins

models” ability to generalise in both protein and ligand space, we chose to provide
our model with a training submatrix of protein/ligand interactions as illustrated in
Fig. 4.2.1a. Specifically, we first split the protein targets randomly into an 80% training
and 20% test set. For each known target, we randomly selected 20% of the active and
known inactive ligands to be in the test set. We further selected 20% of the decoys to be
in the test set. All remaining ligands were placed in the training set. The models were
not provided with any information about interactions involving any of the test ligands
or proteins. Our methodology ensures that all protein targets in the training set have
some active and inactive ligands in the training set. Further, the training submatrix is
potentially incomplete, since there may be interactions between known proteins and
known ligands about which we have no experimental data. A number of statistics

about our train/test splits are reported in Table 4.A.1.

A B

Train Ligands Test Ligands Train Ligands Test Ligands

- =)

Train Train
Proteins Proteins
Test Test
Proteins Proteins

Figure 4.2.1: (a) Our split into training and test sets for the DTI problem, with three
subproblems: unseen target, unseen target and drug, unseen drug. This
chapter focuses on the unseen target and drug problem, which is most
difficult as it requires generalisation in both protein and ligand space. (b)
Our proposed method, wherein we build protein/ligand binding mod-
els for each training protein with the given data (ignoring any unknown
interactions) and use these models to predict the interactions between
the given protein and all the ligands provided. We then use a stan-
dard DTI model to generalise to the test proteins using all the provided
information.

Our set-up allows us to define 3 distinct subproblems testing different methods of
generalisation. The unseen drug subproblem on train proteins and test ligands tests
our models” ability to generalise in ligand space. The unseen target subproblem on

train ligands and test proteins tests our models” ability to generalise in protein space.
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The unseen target and drug subproblem on test ligands and test proteins tests our
models” ability to generalise simultaneously in both protein and ligand space; we ex-
pect this to be the hardest subproblem. This is significantly harder than tasks tested in
previous DTI work [19] and will be the subproblem we focus on. Our data from Table
4.A.1 indicate that despite large variance, on average all 3 subproblems are roughly
balanced in terms of the number of actives and inactives due to our setup. This allows
us to use the Area Under the Receiver Operating Characteristic Curve (AUC) as our
metric for measuring model accuracy.

Some models required hyperparameter tuning, so we created a validation subma-
trix. This was created in the same way as described previously with the train/test split,
but the split into train and validation was done within the training submatrix gener-
ated previously. Hyperparameters were tuned separately for every repetition using
the overall AUC on the validation set; model performance was then evaluated on the
test set. We performed 20 repetitions to test all models; error bars reported below are

to 1 SEM.

4.2.2 Models

The principle behind our proposal (see Fig. 4.2.1b) is to add a preprocessing step for all
the training proteins. We build single protein/ligand binding models for each training
protein with the given data (ignoring any unknown interactions) and use these models
to predict the interactions between the given protein and all the ligands provided. We
then use a standard DTI model to generalise to the test proteins using all the provided
information.

The single protein/ligand binding models we tested were random forest and logis-
tic regression with ECFP6 fingerprints with 2048 bits. [58] Both models were imple-
mented with scikit-learn. [51] We used C = 1 for logistic regression and 100 trees with
a maximum depth of 25 for random forest. These models are known to perform well
on the single protein/ligand binding problem.

There are two important modifications that must be made to all DTI models used.
First, the DTI model must accept probabilities in its training set. Second, the DTI
model must not incorporate any additional information about ligand similarity, since

we do not need to generalise to any further ligands. Section 4.B.4 and Fig. 4.B.12 show
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that failing to make this modification results in poorer performance. We made these
modifications on a case-by-case basis to all of the models.

We tested one baseline model and four high-performing standard models from the
literature [19]. In all cases, the similarity matrices used were normalized pairwise
E-value scores from HMMER for the proteins [18] and Tanimoto similarities on the
ECFP6 fingerprints for the ligands. A list of the DTI models tested, their definitions
and properties, and the hyperparameters used for training may be found in Sections

4.A2-4A3.

4.3 Results

We omit results about the Kinase, Other Enzyme, and Ion Channel datasets in the
main text. Those results may be found in Section 4.B.1 and Figs. 4.B.1 - 4.B.4, and also

support our conclusions.

4.3.1 On the Unseen Target and Drug Subproblem

We present the AUCs of our models with and without logistic regression as prepro-
cessing on the unseen target and drug subproblem in Fig. 4.3.1. We see improvement
upon adding either logistic regression or random forest to almost all models on almost
all datasets. These results appear to hold for a variety of model types, ranging from
our baseline nearest-neighbor models to matrix factorization-based methods to one-
hot featurized methods, and do not depend on dataset size or sparsity. All of these
results are statistically significant ata p < 0.01 level. Figs. 4.B.5 and 4.B.8 demonstrate
that these results largely hold on a trial-by-trial basis as well.

Fig. 4.3.2 shows the results of our models with both logistic regression and random
forest as preprocessing on the unseen target and drug subproblem. In general, we
see greater improvement when logistic regression is added as a preprocessing step
rather than random forest. When logistic regression is used, even baseline models like
weighted-NN, regardless of their previous performance, often achieve high accuracy
with AUCs exceeding 0.85, suggesting that our method is crucial in allowing essen-
tially any DTI model to generalise simultaneously in both protein and ligand space.

Many of the similarity-based models perform very similarly once our preprocessing is

74



4.3 Results

1.0 1.0
I Original
%) o B With Log
2 2
< 0.9 < 0.9
D D
> >
— —
[a)] o '
© 0.8 © 0.8
c c
© @©
e e
[ [
207 o7
[ [
c c
s &
n 0.6 n 0.6
c c
> B Original >
B With Log
0.5 w-NN  RF One-Hot RLS-WNN CMF WGRMF 0.3 w-NN  RF One-Hot RLS-WNN CMF WGRMF
Model Class Model Class

Figure 4.3.1: Effect of Adding Logistic Regression Preprocessing on Unseen Target and
Drug AUCs for DTI Models for (a) the Nuclear Receptor Dataset and (b)
the GPCR Dataset. We see consistent improvement in all models upon
adding logistic regression as preprocessing with single protein/ligand
binding models, regardless of dataset size or sparsity and type of DTI
model used. In particular, RF one-hot with logistic regression as prepro-
cessing consistently attains AUCs above 0.9, suggesting that it is now ca-
pable of simultaneously generalising in protein and ligand space.

added, suggesting that our method is responsible for the vast majority of their perfor-

mance on this problem.
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Figure 4.3.2: Unseen Target and Drug AUCs for All DTI Models for (a) the Nuclear
Receptor Dataset and (b) the GPCR Dataset. We typically see greater im-
provement with logistic regression as preprocessing than with random
forest, but both methods are still effective.

RF one-hot with logistic regression as preprocessing consistently performs very well,
attaining AUCs above 0.9. Our results suggest that this model is now capable of si-

multaneously generalising in both protein and ligand space. Further, in most datasets
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the addition of preprocessing with logistic regression is key to the performance of this
model.

We did not compute the exact runtime of each individual model since a number
of steps common to multiple models were performed once for optimization purposes
and different runs of the program occurred on different computers. However, our
observations indicate that adding single protein/ligand binding models significantly
reduces both runtime and memory costs since the drug similarity matrix does not to
be computed and stored; doing so for a reasonably large dataset can take hundreds of

gigabytes and several hours of computer time on a single core.

4.3.2 On the Other Subproblems

We now examine the performance of our models on the other 2 subproblems outlined
above. We begin with the unseen drug subproblem; our results are shown in Fig. 4.3.3.
As expected, we see significant improvement in the performance of all models upon
adding the preprocessing with single protein/ligand binding models; all of these re-
sults are statistically significant ata p < 0.01 level. Figs. 4.B.7 and 4.B.10 demonstrate
that these results hold on a trial-by-trial basis as well. For all but the kinase dataset,
it appears that the single protein/ligand binding models are nearly perfect, suggest-
ing that this subproblem is relatively easy to model likely due to dataset bias [59, 72].

Regardless, the DTI models on their own are unable to replicate this success.
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Figure 4.3.3: Unseen Drug AUCs for All DTI Models for (a) the Nuclear Receptor
Dataset and (b) the GPCR Dataset. We see significant improvement in all
models upon adding the preprocessing with single protein/ligand bind-
ing models.
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Our results on the unseen target problem are shown in Fig. 4.3.4. Unexpectedly, we
see consistent improvement in all the non-one-hot-based methods, despite the fact that
this problem focuses on known drugs; all of these results are statistically significant at
a p < 0.01 level. Figs. 4.B.6 and 4.B.9 demonstrate that these results hold on a trial-by-
trial basis as well. This is true even for models such as WGRMF, where preprocessing
has minimal effect on the unseen drug subproblem but a much larger effect in the
unseen target subproblem. Thus even a model that performs well in the unseen drug
subproblem can benefit from our method of preprocessing with single protein/ligand

binding models.
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Figure 4.3.4: Unseen Target AUCs for All DTI Models for (a) the Nuclear Receptor
Dataset and (b) the GPCR Dataset. We see consistent improvement in
all models aside from RF one-hot upon adding preprocessing with single
protein/ligand binding models.

Our method does not show improvement for RF one-hot on the unseen target sub-
problem. It is unclear why this is the case, but we observed that the improvements
on the unseen target and drug subproblem and unseen drug subproblem consistently
outweigh the small worsening of performance on the unseen target subproblem, sug-

gesting that our method is still useful for RF one-hot.

4.3.3 Proposed Explanations

We propose two explanations of the improvement in performance described previ-
ously. For the unseen drug problem, many standard DTI models implicitly use Tani-
moto similarity as the only ligand feature. Analysis of single protein/ligand binding

models has indicated that Tanimoto similarity is not a particularly robust model and
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options such as logistic regression and random forest perform better. Thus it is not

surprising that we see improvements in the unseen drug problem for these models.

This explanation does not apply to the one-hot feature models, which receive the
same ligand features as the single protein/ligand binding models. Our results suggest
that unexpectedly the added information about related proteins tends to confuse the
model instead of improving its performance. It is possible that relatively simple mod-
els like logistic regression and random forest are not sufficiently expressive to capture
the full complexity of the multiple protein/ligand binding problem, since massively
multitask neural networks have previously proven successful at transferring data be-

tween related proteins [54].

For the unseen target and unseen target and drug problems, the key advantage
our preprocessing provides DTI models with is additional data that they can fit to.
This data is clearly very accurate, as demonstrated by our performance on the un-
seen drug problem. It is also nontrivial. Fig. 4.3.5 is a histogram of the additional
information our method provides to DTI models on the GPCR dataset. Specifically,
it shows the probabilities of interactions predicted by the single protein/ligand bind-
ing logistic regression and random forest. Supplementary Fig. 512 shows similar data
for the other datasets. While most interactions are predicted to be inactive, a small
but significant proportion of the interactions are predicted to be active; in contrast,
standard approaches either ignore this data or assume that any unknown interactions
are inactive [19]. We believe that this additional data explains the improvement in

performance in both the unseen target and unseen target and drug problems.

Logistic regression consistently performs better as a single protein/ligand binding
model than random forest. Fig. 4.3.5 suggests that this is at least partly a calibration
issue; it is known that logistic regression outputs probabilities whereas random forest
is not generally correctly calibrated [6]. It is also known that logistic regression is
marginally better at generalising than random forest; this may help explain some of

the difference.
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Figure 4.3.5: Histogram of Added Information to Training Matrix when Preprocessed
by (a) Logistic Regression and (b) Random Forest. This shows the pre-
dicted probabilities of interactions that are added to the training matrix
by the appropriate single protein/ligand binding model. Most of the in-
teractions are predicted to be inactive, but some are predicted to be ac-
tive. We hypothesize that this additional data helps explain some of the
improvement in the unseen target and drug and unseen target problems.

4.4 Conclusions

In this work, we have demonstrated that preprocessing with robust single protein/ligand
binding models allows generalisation simultaneously in both protein and ligand space

to predict interactions between unseen drugs and unseen targets. We observe this ef-
fect consistently regardless of dataset size or DTI model and see that it also applies for
the unseen drug and unseen target problems. We believe this method works primarily
because the additional high-quality predictions provided by the single protein/ligand
binding models significantly improves the accuracy of the predictions made by the
overall DTT models.

In particular, we note that logistic regression as a single protein/ligand binding
model tends to improve performance the most. Our best-performing DTI method
was random forest with the one-hot feature set of amino acid counts and ECFP6 lig-
and fingerprints. Since this is a very simple model, we suspect that more complicated
models like deep neural networks will be able to learn more information about the
dataset and perform better. Our work also suggests feature-based methods perform
significantly better than similarity-based methods and should be the preferred option
for future research into DTI models.

There are a number of open questions that remain about this work. We have shown
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the unexpected result that adding more data about related proteins consistently de-
grades performance on the unseen drug subproblem when compared to the same sin-
gle protein/ligand binding model that does not have access to that data, in contrast to
the results of multitask neural networks [54]. We believe that this is due to the lack of
expressivity of our models, logistic regression and random forest, to fully model the
multiple protein/ligand binding problem. Further research should be done to see if
this still holds for more complicated models like deep neural networks.

Next, all of the DTT models we have used in this chapter accept probabilities in their
training data, but none of them interpret the probabilities in the most natural way. The
canonical probability loss function is cross-entropy loss, but all of the regression ap-
proaches use least-squares loss to fit. It is possible that changing the loss function will
improve overall performance. Similarly, it is possible that correctly calibrating the sin-
gle protein/ligand random forest models will improve performance, as we previously
noted that they are currently incorrectly calibrated in Fig. 4.3.5b.

Another important concern is about the generalisation ability of our model. It is
known that single protein/ligand binding models that perform well on benchmark
datasets prove unable to generalise due to clustering in chemical space and dataset
bias [70, 11, 59, 61, 72, 43]. Similarly, clustering in protein space due to phylogenetic
relationships can result in dataset bias and overly optimistic predictions of a model’s
ability to generalise. We suspect that these biases may occasionally play a role in the
high performance of our models given the high variance in performance observed
between different train/test splits on the same dataset. More careful data splits should
be designed that account for these biases accurately to gain a better evaluation of our
models.

Finally, we see that many of the target similarity-based methods perform very sim-
ilarly and very close to the baseline methods on the unseen target and drug problem
once the single protein/ligand binding models are added. This suggests that the key to
improving performance is to develop a better similarity matrix or use explicit features

instead, rather than developing more complicated similarity-based models.
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Appendix: Supporting Information

4.A Supplementary Methods

4.A.1 Dataset Statistics

Some basic statistics about the size of the datasets may be found in Table 4.A.1.

Dataset Nuclear Receptor | Ion Channel GPCR Kinase Other Enzyme
Proteins 21 40 91 62 113
Ligands 19197 17536 75380 66120 69923
Actives 12978 19717 96289 65654 69968
Non-Decoy Inactives 11438 1480 13289 28899 16972
Mean Protein Similarity 0.145 0.033 0.074 0.081 0.009
Train-Test Protein Similarity 0.5140.20 0.434+0.28 | 0.37+0.14 0.47+0.23 0.33+0.28
Train-Test Ligand Similarity 0.61 4-0.20 0.70+=0.16 | 0.72+0.15 0.67+0.18 0.67 +=0.17
Train Ligands 14969 + 14 13860 =14 | 55885+ 32 49776 1 45 53865 4= 28
Test Ligands 4723 - 14 4172 14 19974 £ 32 16830 £ 45 16537 £ 28
Unseen Drug Actives 3018 &350 4168 =561 | 25979 +£1170 | 20492 = 1125 | 16083 + 1374
Unseen Drug Inactives 3861 £ 290 3508 =54 | 10250 +:375 | 10860 =688 | 12306 4315
Unseen Target Actives 2020 4932 2927 £1426 | 13658 2252 | 8417 2455 | 10098 + 2731
Unseen Target Inactives 4185 4= 841 3407 =165 | 8957 £1548 | 9561 2261 | 11503 41099
Unseen Target/Drug Actives 889 + 351 1116 =567 | 7127 =1115 | 5435+ 1071 4384 1379
Unseen Target/Drug Inactives 1275 + 285 889 £+ 49 2655 £ 378 2866 £ 696 3207 =301

Table 4.A.1: Statistics of Datasets Used. This table reports the number of proteins, lig-
ands, active interactions, non-decoy inactive interactions, and the mean
similarity between all proteins in the dataset. We also report the mean
similarity between any protein or ligand in the test set and its closest pro-
tein or ligand in the training set, the number of training and test ligands,
and the number of actives and inactives in the unseen drug, unseen target,
and unseen drug + target problems.
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4.A.2 Model Descriptions

A list of the DTI models tested follows, along with the modifications we made. For
convenience, let the training drug-target similarity matrix be Y, the predicted output
from the model Y4, the drug similarity matrix be Sy, and the target similarity matrix

be St.

1. Weighted Nearest Neighbor (Weighted NN), a baseline method which weights
the nearest interactions in protein and ligand space by their similarity [75]. Un-

known interactions are assumed to be non-interactions.

2. Random Forest One-Hot (RF One-Hot). The feature set used was ECFP6 finger-
prints with 2048 bits for the ligands and a count of amino acids for the proteins.
This is distinct from the single protein/ligand binding models since it attempts to
tit the data for all the proteins at once. In order to incorporate the probabilistic in-
formation, we used a regressor model instead of a classifier with a least-squared

loss.

3. Regularized Least Squares-Weighted Nearest Neighbor (RLS-WNN), a regular-
ized least-squares linear regression model based on protein and ligand similarity.
Unknown interactions are assumed to be non-interactions. We first infer interac-

tions for completely unseen drugs and targets by letting

where the drugs are sorted in descending order of similarity and w; = n/~1 for

some hyperparameter 7 [67].

Next, we compute Gaussian interaction profile (GIP) kernels; the drug kernel is
GIP,(d;, d;) = exp(—||Y(di) — Y(d))| ")

for some hyperparameter  and the target kernel is defined similarly. We then

merge these with the similarity matrices to get

Kd = OCSd + (1 — Dé) GIPd
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for some hyperparameter a,0 < a < 1. Let K = K; ® K; be the kernel over

drug-target pairs; we can then use kernel ridge regression to compute
Ypred = K(K + O-I)_1Y

where Y is the flattened version of the training matrix. The inverse is computed

via an eigendecomposition due to computational constraints [67].

Due to the larger dataset size, we approximated the inverse of the drug simi-
larity matrix using only the top 100 eigenvalues instead of computing it exactly.
When we incorporated our preprocessing step, we only used the target similar-
ity matrix in the RLS computation and omitted the weighted nearest neighbor

preprocessing.

. Collaborative Matrix Factorization (CMF) based on protein and ligand similarity.

CMF finds matrices A and B to minimize the function
T 2 2 2 T 2 T 2
W (v —aBT) ||+ (1Al + 1BIP) + A+ | |5 — AAT||"+ A4 | |54 — BB

where W is a weight matrix with W;; = 0 for unknown pairs, © is an elementwise
product, all norms are the Frobenius norm, and A;, A4, and A; are hyperparame-
ters. Optimization occurs via an alternating least squares algorithm [76]. When
incorporating the single protein/ligand binding models, we set the hyperparam-

eter A; corresponding to drug similarity to 0.

. Weighted Graph-Regularized Matrix Factorization (WGRMF) based on protein

and ligand similarity. The loss function is
Hw © (Y- aB") ‘ ’2 + A (I1AP +1BI[2) + A Te (AT6A) + A4 Tr (BT¢4B)

where ¢, {; are normalized graph Laplacians for a sparsified drug/target graph.
Sparsification occurred by only keeping the p nearest neighbors for any given
point in the graph. Optimization is essentially the same as in CMF [20]. When
incorporating the single protein/ligand binding models, we set the hyperparam-

eter corresponding to drug similarity to 0.
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4.A.3 Hyperparameter Selection

All hyperparameters were individually selected for each run of every given model.
In order to select the hyperparameters, we used a 3-way train/validation/test split,
where the train+validation submatrix was generated as described in the main text and
the training submatrix was generated as a subset of the train+validation submatrix.
Specifically, we used the procedure previously described to identify train+validation
and test ligands and proteins. We then repeated this procedure within the set of
train+validation ligands and proteins, splitting the protein targets randomly into an
75% training and 25% test set and proceeding similarly with the ligands. The optimal
hyperparameter on the validation set was selected and used to measure performance
on the test set.

Hyperparameters were adapted from successful values in the literature [19]. The

list of hyperparameters used follows:

1. Weighted NN had no relevant hyperparameters.

2. RF One-Hot. The number of trees was allowed to vary within {50,100, 150} and
the maximum depth {15, 20,25, 30}.

3. RLS-WNN. The ordered triple (o, &, 7) was allowed to vary within
{(0.25,0.1,0.4), (0.5,0.9,0.4), (2,0.6,0.1), (0.5,1,0.6) }.
When preprocessing was added, the same ordered triple was allowed to vary

within

{(0.5,0.5,0.6), (0.5,1,0.7), (0.25,1,0.7) };

we found these values consistently performed better than the previous ones only

with preprocessing.

4. CMF. The ordered triple (A}, A4, A¢) was allowed to vary within

{(1,4,32),(2,8,0.125), (4,32,0.25), (2,64,0.125), (0.25,0.25,32), (1,0.0625,2) }.
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When preprocessing was added, we fixed A; = 0 and allowed

(A, Ar) € {(1,32),(0.25,32), (0.5,64), (0.5,32)}.

5. WGRME. The ordered quadruple (A}, A4, A¢, p) was allowed to vary within
{(0.0625,0.05,0.1,2), (0.25,0.2,0.2,4), (0.25,0.2,0.2,4), (0.25,0.2,0.2,5) }.

When preprocessing was added, we fixed A; = 0 in the above values. p de-
termines the degree of sparsification of the training matrix used as a form of

regularization prior to running the WGRMEF algorithm [20].

4.B Supplementary Results

4.B.1 Additional Datasets

Figs. 4.3.1, 4.3.2, 4.3.3, and 4.3.4 show the improvement in performance on all three
subproblems upon adding our preprocessing method for all datasets, not just the 2
shown in the main text, and for both logistic regression and random forest preprocess-
ing. We see consistent improvement regardless of the size or other properties of the
dataset and improvement for both logistic regression and random forest. Figs. 4.3.2,
4.3.3, and 4.3.4 suggest that logistic regression is a slightly superior means of prepro-

cessing when compared to random forest.

4.B.2 Trial-by-Trial Comparisons

Instead of examining averages over all 20 trials of the algorithm, we can also examine
performance on each individual train/test split. A comparison of the unseen drug and
target AUCs is shown in Fig. 4.B.5, of the unseen target AUCs in Fig. 4.B.6, and of the
unseen drug AUCs in Fig. 4.B.7. Each data point in these plots corresponds to one of
the 20 train/validation splits and shows the AUC of our models on the appropriate
subproblem with and without preprocessing with logistic regression.

Figs. 4.B.5 and 4.B.6 demonstrate that despite large variance in performance be-

tween trials, on almost every individual trial for almost all models we see consistent
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Figure 4.B.1: Effect of Adding Logistic Regression Preprocessing on Unseen Target
and Drug AUCs for DTI Models for (a) the Nuclear Receptor Dataset,
(b) Ton Channel Dataset, (c) the GPCR Dataset, (d) the Kinase Dataset,
and (e) the Other Enzyme Dataset. We see consistent improvement in
all models upon adding logistic regression as preprocessing with single
protein/ligand binding models, regardless of dataset size or sparsity and
type of DTI model used.

improvement after preprocessing is added. The lone exception is RF One-Hot on the

unseen target AUC, as mentioned in the main text. The variance in model performance
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Figure 4.B.2: Unseen Target and Drug AUCs for All DTI Models for (a) the Nuclear Re-
ceptor Dataset, (b) Ion Channel Dataset, (c) the GPCR Dataset, (d) the Ki-
nase Dataset, and (e) the Other Enzyme Dataset. We typically see greater
improvement with logistic regression as preprocessing than with random
forest, but both methods are still effective.

is likely due to randomness in the set of test proteins; since there are a small number of

protein targets for all datasets, if a protein that is particularly distant is held-out, that

could decrease performance. This variance also tends to decrease after application of

our preproces

sing.
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Figure 4.B.3: Unseen Drug AUCs for All DTI Models for (a) the Nuclear Receptor

Dataset, (b) Ion Channel Dataset, (c) the GPCR Dataset, (d) the Ki-
nase Dataset, and (e) the Other Enzyme Dataset. We see significant im-

provement in all models upon adding the preprocessing with single pro-
tein/ligand binding models.

Fig. 4 B.7 demonstrates that our models consistently perform outstandingly on the

unseen drug subproblem. As noted in the main text, this is likely at least partially a

result of dataset bias in chemical space.
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Figure 4.B.4: Unseen Target AUCs for All DTI Models for (a) the Nuclear Receptor
Dataset, (b) Ion Channel Dataset, (c) the GPCR Dataset, (d) the Kinase
Dataset, and (e) the Other Enzyme Dataset. We see consistent improve-
ment in all models aside from RF one-hot upon adding preprocessing
with single protein/ligand binding models.

in Figs. 4.B.8, 4.B.9, and 4.B.10. Our conclusions are similar as to the case with logistic

regression.
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4.B.3 Failure to Eliminate Ligand Similarity

To better understand the importance of eliminating the ligand similarity matrix in
the DTI model, we examined the effects of not eliminating it in the RLS-WNN algo-
rithm. We compared five models: the original RLS-WNN algorithm, the RLS-WNN
algorithm unmodified but with preprocessing via logistic regression or random forest,

and the RLS-WNN modified to only look at the target similarity matrix and with both
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Figure 4.B.6: Comparison of Unseen Target AUCs with and without Logistic Regres-
sion Preprocessing for (a) RF One-Hot, (b) RLS-WNN, (c) CMF, and (d)
WGRME. We see improvement on every method in almost all test runs
for models aside from RF One-Hot. The wide variance in performance
is likely due to randomness in which proteins are held-out; our method

also decreases this variance.

preprocessing methods.

Our results are shown in Fig. 4.B.11. We observe that the unmodified RLS-WNN

algorithm with our preprocessing method is often better than the original RLS-WNN

model, but it is still significantly worse than the RLS-WNN model that correctly ig-

nores ligand similarity. In particular, the unseen target AUCs and some of the unseen

drug AUCs are significantly worse without the modification. We also see that when
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Figure 4.B.7: Comparison of Unseen Drug AUCs with and without Logistic Regres-
sion Preprocessing for (a) RF One-Hot, (b) RLS-WNN, (c) CMF, and
(d) WGRME. We see improvement on every method in almost all test
runs. The high performance is likely a result of bias within the chemical

the unseen drug AUC is not significantly affected like in the nuclear receptor dataset,
the drop in performance in the other AUCs is smaller; however, when the unseen drug
AUC is significantly affected, the drop in performance in the other AUCs is larger, al-

most negating the advantages of preprocessing.

Clearly, adding information about ligand similarity to the DTI model worsens the

performance of the overall model. This is likely because logistic regression and ran-
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Figure 4.B.8: Comparison of Unseen Drug and Target AUCs with and without Ran-
dom Forest Preprocessing for (a) RF One-Hot, (b) RLS-WNN, (c) CMEF,
and (d) WGRME. We see improvement on every method in almost all test
runs. The wide variance in performance is likely due to randomness in
which proteins are held-out; our method also decreases this variance.

dom forest are more accurate methods of determining similarity between ligands than
the Tanimoto similarity matrix. Incorporation of the Tanimoto ligand similarity matrix
corrupts the information provided by our preprocessing method and lowers accuracy
of the models overall. It is therefore important to ensure that DTI methods do not
incorporate additional inaccurate information about the ligands; when our method is

used, they should be used exclusively for generalisation in target space.

4.B.4 Probabilities Predicted in Training Submatrix

As mentioned in the main text, one of the primary explanations behind the added
predictive power of our preprocessing method is the additional information provided

by filling in the training matrix for all of the train proteins. We show a histogram of
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Figure 4.B.9: Comparison of Unseen Target AUCs with and without Random For-
est Preprocessing for (a) RF One-Hot, (b) RLS-WNN, (c) CMF, and (d)
WGRME. We see improvement on every method in almost all test runs
for models aside from RF One-Hot. The wide variance in performance
is likely due to randomness in which proteins are held-out; our method
also decreases this variance.

the probabilities of interaction predicted by our preprocessing step for both logistic
regression and random forest in Fig. 4.B.12 for all other datasets (aside from GPCR,
which was shown in the main text).

As with the GPCR dataset, we see a number of active interactions predicted that
were not in the original training matrix. This added information helps the DTI models
train more effectively and make more accurate predictions. We also see similar issues
with random forest calibration as on the GPCR dataset, suggesting that recalibrating

the random forest model could improve overall performance.
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The high performance is likely a result of bias within the chemical

dataset.
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Figure 4.B.11: Effect of Not Eliminating Ligand Similarity on RLS for (a) Unseen Tar-
get and Drug AUC, (b) Unseen Drug AUC, and (c) Unseen Target AUC.
Models that incorrectly incorporate ligand similarity into the RLS al-
gorithm consistently perform worse than those that do not, emphasiz-

ing the need to eliminate ligand similarity in the DTI model after our
preprocessing.
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4.B Supplementary Results
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Figure 4.B.12: Histogram of Added Information to Training Matrix for (a-b) Nuclear
Receptor, (c-d) Ion Channel, (e-f) Kinase, and (g-h) Other Enzyme
Datasets when Preprocessed by (a, ¢, e, g) Logistic Regression and (b,
d, f, h) Random Forest. This shows the predicted probabilities of inter-
actions that are added to the training matrix by the appropriate single
protein/ligand binding model. Most of the interactions are predicted to
be inactive, but some are predicted to be active. We hypothesize that
this additional data helps explain some of the improvement in the un-
seen target and drug and unseen target problems.
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Chapter 5

Conclusion

In this thesis, we have examined some of the pitfalls and issues that arise in machine
learning applied to protein/ligand binding as well as ways to avoid them. Chapter
2 showed that many standard ML models do not generalise well and that debiasing
algorithms that eliminate clustering in datasets do not aid in generalisation. Chapter 3
developed methods to measure a model’s ability to attribute or explain its predictions
and found that many models consistently learn the wrong binding logic; we demon-
strated that this was likely due to spurious correlations in the background data that
confounded our models. Chapter 4 introduced a new method of preprocessing using
single protein models to improve the accuracy of DTI models when generalising to
data about previously unseen proteins.

One of the key problems for ML virtual screening models today is generalisation, in
both protein and ligand space. In chemical space, our results suggest a few potential
avenues for further research. We could adopt applicability domains to sidestep the
question of generalisation entirely. Alternatively, we could gain a better understand-
ing of the background correlation that is likely confounding our models” attempts at
generalising and thereby develop more diverse fragment libraries. Our results suggest
that incorporation of fragment-matched decoys, i.e. molecules that have some but not
all similar fragments, will help models learn more effectively. Similarly, lowering the
background correlation rate due to clustering around scaffolds may help our mod-
els generalise better. In contrast to these, the RMT-based approaches and debiasing
approaches previously used seem to be ineffective for this problem.

Related to the problem of generalisation in chemical space is the issue of attribution.
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Chapter 5 Conclusion

Our results indicate that understanding background correlation is crucial to eliminat-
ing misattributions in our models, as is a more diverse background library so models
see a larger variety of molecules. These steps should make it more reasonable for
medicinal chemists to draw mechanistic conclusions from the output of ML virtual
screening models.

Lastly, we have the issue of generalisation in protein space. Our results suggest that
the key is to use simple, robust single protein models to make predictions through-
out chemical space and then generalise in protein space. This step significantly aug-
ments performance on the unseen target and drug problem, beyond any change in
the DTI model used. However, our high performance was only demonstrated on ran-
domly split data, not accounting for bias in either chemical or protein space. Further
insights are needed to better incorporate information about the protein targets and

create better-performing DTI models to fully tackle this problem.
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